CSI5126. Algorithms in bioinformatics
 Pairwise Sequence Alignment

Marcel Turcotte

u Ottawa

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Version September 27, 2018

Summary

In this lecture, we learn that molecular sequences suffer mutations.
We distinguish between two kinds of similar sequences: orthologues and paralogues. We derive an algorithm to compare molecular sequences taking into account their mode of evolution.

General objective

\#- Describe in your own words the pairwaise sequence alignment problem and explains its asumptions.

Reading

:- Bernhard Haubold and Thomas Wiehe (2006). Introduction to computational biology: an evolutionary approach. Birkhäuser Basel. Pages 11-15, 30-33.

Comparative sequence analysis

Comparative sequence analysis

Why?

Comparative sequence analysis

Why?

"Determining function for a sequence is a matter of tremendous complexity, requiring biological experiments of the highest order of creativity. Nevertheless, with only DNA sequence it is possible to execute a computer-based algorithm comparing the sequence to a database of previously characterized genes. In about 50\% of the cases, such a mechanical comparison will indicate a sufficient degree of similarity to suggest a putative enzymatic or structural function that might be possessed by the unknown gene."
Caskey et al. (1995) Genome Digest 2:6-9.

Comparative sequence analysis

A molecular sequence alignment aims
" to identify similar regions between two sequences

- to determine if two sequences have a common origin

Comparative sequence analysis

:- Molecular sequences are the result of evolutionary processes.

Comparative sequence analysis

". Molecular sequences are the result of evolutionary processes.
\%. Speciation (the formation of new and distinct species in the course of evolution) is the main process for creating new, yet related, sequences.

Comparative sequence analysis

:- Molecular sequences are the result of evolutionary processes.
: Speciation (the formation of new and distinct species in the course of evolution) is the main process for creating new, yet related, sequences.
:- Evolution transforms the sequences: point mutations (insertions, deletions, substitutions), duplications, inversions, transpositions, etc. Consequently, making it more difficult (interesting) to find the common origins.

Comparative sequence analysis

:- Molecular sequences are the result of evolutionary processes.
: Speciation (the formation of new and distinct species in the course of evolution) is the main process for creating new, yet related, sequences.
." Evolution transforms the sequences: point mutations (insertions, deletions, substitutions), duplications, inversions, transpositions, etc. Consequently, making it more difficult (interesting) to find the common origins.
:- Information (function, structure, etc.) that is known about a sequence can generally be transferred to "similar" sequences.

Comparative sequence analysis

:" Molecular sequences are the result of evolutionary processes.
:- Speciation (the formation of new and distinct species in the course of evolution) is the main process for creating new, yet related, sequences.
.- Evolution transforms the sequences: point mutations (insertions, deletions, substitutions), duplications, inversions, transpositions, etc. Consequently, making it more difficult (interesting) to find the common origins.
:- Information (function, structure, etc.) that is known about a sequence can generally be transferred to "similar" sequences.
:- Comparative sequence analysis is therefore an essential and powerful tool.

Caveat

:- All forms of life are believed to have evolved from a common origin.

Caveat

:- All forms of life are believed to have evolved from a common origin.
:- The genomic content of the proto-cell (proto-organism) certainly arose by a series of events, including duplication content, from smaller sequence fragments.

Caveat

:- All forms of life are believed to have evolved from a common origin.
:- The genomic content of the proto-cell (proto-organism) certainly arose by a series of events, including duplication content, from smaller sequence fragments.
:- Conclusion: all the sequences are related one to another.

Caveat

:- All forms of life are believed to have evolved from a common origin.
\%. The genomic content of the proto-cell (proto-organism) certainly arose by a series of events, including duplication content, from smaller sequence fragments.
:- Conclusion: all the sequences are related one to another. This is not a very productive statement. The evolutionary relationships that are considered interesting are those that can be explained by the techniques presented here, for which there are convincing statistical evidences.

Requirements

What are the requirements (necessities, difficulties)?

Requirements

What are the requirements (necessities, difficulties)?
". Which metric is adequate to compare molecular sequences?

Requirements

What are the requirements (necessities, difficulties)?
". Which metric is adequate to compare molecular sequences?
. How to compute the alignment efficiently?

Requirements

What are the requirements (necessities, difficulties)?
". Which metric is adequate to compare molecular sequences?

- How to compute the alignment efficiently?
". How to align sequences when $\left|S_{1}\right| \ll\left|S_{2}\right|$?

Requirements

What are the requirements (necessities, difficulties)?
\#. Which metric is adequate to compare molecular sequences?

- How to compute the alignment efficiently?
. How to align sequences when $\left|S_{1}\right| \ll\left|S_{2}\right|$?
How to score substitutions?

Requirements

What are the requirements (necessities, difficulties)?
\#. Which metric is adequate to compare molecular sequences?

- How to compute the alignment efficiently?

How to align sequences when $\left|S_{1}\right| \ll\left|S_{2}\right|$?
: How to score substitutions?
: How to score insertions and deletions?

Requirements

What are the requirements (necessities, difficulties)?
\#. Which metric is adequate to compare molecular sequences?
\#- How to compute the alignment efficiently?

- How to align sequences when $\left|S_{1}\right| \ll\left|S_{2}\right|$?
: How to score substitutions?
: How to score insertions and deletions?
* Any two sequences can be aligned, how to evaluate (the likelihood of) an alignment?

Requirements (continued)

Are these two sequences similar?

A VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKG B SLSAAQKDNVKSSWAKASAAWGTAGPEFFMALFDAHDDVFAKFSGLFSGAAKGTVKN

Requirements (continued)

Are these two sequences similar?

A VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKG
B SLSAAQKDNVKSSWAKASAAWGTAGPEFFMALFDAHDDVFAKFSGLFSGAAKGTVKN !!!! ! !!! ! ! ! !

14 out of $57(25 \%$ of $)$ amino acids are identical.

Requirements (continued)

Are these two sequences similar?

A VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFD-LSHGSAQ--VKG
B SLSAAQKDNVKSSWAKA---SAAWGTAGPEFFMALFDAHDDVFAKFSGLFSGAAKGTVKN
!!!!!!!! ! ! ! ! ! ! ! ! ! ! ! !

Insertion/deletions, two evolutionary events, must be taken into account
21 out of $60(35 \%$ of) positions are identical.

What's an indel?

\% Indel stands for insertion or deletion.

What's an indel?

.. Indel stands for insertion or deletion.
:- Given exactly two sequences, I am claiming that insertions cannot be distinguished from deletions, hence the use of the word indel.

What's an indel?

.. Indel stands for insertion or deletion.
:- Given exactly two sequences, I am claiming that insertions cannot be distinguished from deletions, hence the use of the word indel.

What's an indel?

". Indel stands for insertion or deletion.
:- Given exactly two sequences, I am claiming that insertions cannot be distinguished from deletions, hence the use of the word indel. What do I mean?
". Consider the following pairwise alignment, was the \mathbf{U}, present in $\mathbf{S 1}$, deleted, to produce $\mathbf{S} 2$? Or, was is a \mathbf{U} inserted into $\mathbf{S} 2$ to produce $\mathbf{S 1}$?

S1 = UGCUUA
S2 = UGC-UA

What's an indel?

What's an indel?

VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFD－LSHGSAQ SLSAAQKDNVKSSWAKA SAAWGTAGPEFFMALFDAHDDVFAKFSGLFSGAAK

Requirements

Are these two sequences similar?

$$
\begin{aligned}
& \text { VLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFD-LSHGSAQ } \\
& \text { SLSAAQKDNVKSSWAKA SAAWGTAGPEFFMALFDAHDDVFAKFSGLFSGAAK } \\
& \text { !!!!.! !!!..!.!. .! .!. . ! .. ! . ! . !. ! !.!. }
\end{aligned}
$$

38 out of 60 (63% of) positions have the same or similar properties.

Requirements

Are these two sequences similar? (...have similar regions?)
> Escherichia coli (K-12), complete genome AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT AACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGACAGTGCGGG CTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAAGTTCGGCGGT ACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCC ... $(4,639,675) .$.
GCATGATATTGAAAAAAATATCACCAAATAAAAAACGCCTTAGTAAGTATTTTTC
> Methanococcus vannielii SB, DNA-directed RNA polymerase ATGGATAGATTTGATGTTCCAAAGGAAATCGGAGATATTACATTTGGATTGCTCTCTCCA GAACAGATAAGGACAATGTCTGTTGCAAAAATCGTTACAGCAGATACTTATGATGACGAT
... $(2,670)$...
ACAAAAGTCATTTCAAAATATGAAAATTAA

Dot plot

= A dot plot is a useful tool to compare two sequences.
.- It consists of a two dimensional diagram, such that one sequence is written along one of its axes, and the other sequence along the other axis.
= In its simplest form, a dot is plotted at position i and j if the characters i and j of the two respective strings are identical.

Dotmatcher: hemoglobin•pig vs hemoglobin•trout
(windowsize $=3$, threshold $=5.00 \quad 23 / 09 / 03$)

The resulting diagram often contain too much noise (is too busy).

A window-based approach is generally used to circumvent the problem, i.e. a dot is plotted only if x characters (amino acids or nucleotides) out w characters are identical, where w is the window size.

Dot plots

.- Insertions/deletions show up as slightly shifted diagonal

Dot plots

- Insertions/deletions show up as slightly shifted diagonal
- Shows duplications

Dot plots

(- Insertions/deletions show up as slightly shifted diagonal

- Shows duplications
" Identifies local similarity

Dot plots

(- Insertions/deletions show up as slightly shifted diagonal

- Shows duplications
" Identifies local similarity
.- Shows inverted repeats (anti-diagonals)

Dot plots

- Insertions/deletions show up as slightly shifted diagonal
- Shows duplications
" Identifies local similarity
\# Shows inverted repeats (anti-diagonals)
= Not suitable for automated analyses

Finding an appropriate metric

When insertions and deletions are allowed, there are many possible alignments of the two input sequences.

Finding an appropriate metric

When insertions and deletions are allowed, there are many possible alignments of the two input sequences.

. How many alignments for two input sequences of length 5?

Finding an appropriate metric

When insertions and deletions are allowed, there are many possible alignments of the two input sequences.

.- How many alignments for two input sequences of length 5? 1,683

Finding an appropriate metric

When insertions and deletions are allowed, there are many possible alignments of the two input sequences.

S1 A T T C G	S1 A T T C G -	S1 A T T C G - -
S2 T T C C A	S 2 - T T C C A	$\mathrm{S} 2-\mathrm{T}$ T C-CA
x X	x x x	x x x

. How many alignments for two input sequences of length 5? 1,683
Which one to choose?

Finding an appropriate metric

When insertions and deletions are allowed, there are many possible alignments of the two input sequences.

S1 A T T C G	S1 A T T C G -	S1 A T T C G - -
S2 T T C C A	S 2 - T T C C A	S2-T T C-CA
x X	x x x	X X X

.- How many alignments for two input sequences of length 5? 1,683
"- Which one to choose?
.- The edit distance is the minimum number of edit operations that are needed to transform one string into the other.

Finding an appropriate metric

When insertions and deletions are allowed, there are many possible alignments of the two input sequences.

S1 A T T C G	S1 A T T C G -	S1 A T T C G - -
S2 T T C C A	S 2 - T T C C A	$\mathrm{S} 2-\mathrm{T}$ T C-CA
x X	x x x	x x x

.- How many alignments for two input sequences of length 5? 1,683
Which one to choose?
.- The edit distance is the minimum number of edit operations that are needed to transform one string into the other.
\# The edit distance is sometimes referred to as Levenshtein distance.

Edit distance

The edit operations that are useful to model evolutionary processes are insertions (I), deletions (D) and the substitutions (S).

S1
S2 A T T C G

T T C C A
"- The set of operations can be augmented with the match (M) operation, which simply rewrites a letter from the input onto the output.
= However, the match operation will not be counted when calculating the edit distance; in other words, it can be seens as having a weight of 0 .

Edit distance

:What are the assumptions?

Edit distance

:What are the assumptions?
:- Independent. These operations are independent one from another. The likelihood of a substitution at position i is not affected by the identity of the residue found at position j. Is this realistic?

Edit distance

:- What are the assumptions?
:- Independent. These operations are independent one from another. The likelihood of a substitution at position i is not affected by the identity of the residue found at position j. Is this realistic?
:- Identically distributed. The likelihood does not depend on the specific value of i, the position.

Edit distance

:What are the assumptions?
:- Independent. These operations are independent one from another. The likelihood of a substitution at position i is not affected by the identity of the residue found at position j. Is this realistic?

- Identically distributed. The likelihood does not depend on the specific value of i, the position.
:- Is this realistic?

Edit transcript

An edit transcript is a string over $\{I, D, S, M\}$ that summarizes the edit operations that are applied to the first string in order to produce the second one.

```
Transcript : D M M M S I
S1
S2 : - T T C C A
```


Pairwise alignment problem

:- A string alignment consists of two input strings, written one on the top of the other, such that space (or dash) symbols have been added to the first, or second, string when insertions, or deletions, are seen in the edit transcript.
:- The edit distance problem consists in finding the alignment (or equivalently the edit transcript) that minimizes the edit distance.

Size of the search space

Edit distance (continued)

F- Uses of the edit distance occur outside of the context of biological sequence comparisons, examples are: spelling correction methods or textual database retrieval.
" The Unix program diff is an example of a program that is based on the notion of edit distance. It is a program that compares the content of two files.
"- When ran with the argument e the program program produces a series of commands for the editor ed to transform the first file into the other.

Computing the optimal alignment

:To find an answer, it will help to formalize this problem, to find a mathematical formulation.

Computing the optimal alignment

:To find an answer, it will help to formalize this problem, to find a mathematical formulation.
:We're given two strings S_{1} and S_{2} of length n and m respectively.

Computing the optimal alignment

\#- To find an answer, it will help to formalize this problem, to find a mathematical formulation.
= We're given two strings S_{1} and S_{2} of length n and m respectively.
. Let $D\left(S_{1}, S_{2}\right)$ denote the edit distance of S_{1} and S_{2} (the minimum number of edit operations needed to transform S_{1} into S_{2}).

Computing the optimal alignment

:To find an answer, it will help to formalize this problem, to find a mathematical formulation.
:We're given two strings S_{1} and S_{2} of length n and m respectively.
: Let $D\left(S_{1}, S_{2}\right)$ denote the edit distance of S_{1} and S_{2} (the minimum number of edit operations needed to transform S_{1} into S_{2}).
:- The notation $S_{1}(i)$ stands for the i-th character of S_{1}, e.g. $S_{1}=$ TATAAT, $S_{1}(3)=T$.

Computing the optimal alignment

:To find an answer, it will help to formalize this problem, to find a mathematical formulation.
:We're given two strings S_{1} and S_{2} of length n and m respectively.
\Rightarrow Let $D\left(S_{1}, S_{2}\right)$ denote the edit distance of S_{1} and S_{2} (the minimum number of edit operations needed to transform S_{1} into S_{2}).
:The notation $S_{1}(i)$ stands for the i-th character of S_{1}, e.g. $S_{1}=$ TATAAT, $S_{1}(3)=T$.
: The notation $S_{1}[i, j]$ stands for the substring of S_{1} starting at position i and ending at position j, $S_{1}[i, j]=S_{1}(i) S_{1}(i+1) \ldots S_{1}(j)$, e.g. $S_{1}=$ TATAAT, $S_{1}[3,5]=T A A$.

Computing the optimal alignment

:To find an answer, it will help to formalize this problem, to find a mathematical formulation.
:We're given two strings S_{1} and S_{2} of length n and m respectively.
L. Let $D\left(S_{1}, S_{2}\right)$ denote the edit distance of S_{1} and S_{2} (the minimum number of edit operations needed to transform S_{1} into S_{2}).
:The notation $S_{1}(i)$ stands for the i-th character of S_{1}, e.g. $S_{1}=$ TATAAT, $S_{1}(3)=T$.
: The notation $S_{1}[i, j]$ stands for the substring of S_{1} starting at position i and ending at position j, $S_{1}[i, j]=S_{1}(i) S_{1}(i+1) \ldots S_{1}(j)$, e.g. $S_{1}=$ TATAAT, $S_{1}[3,5]=T A A$.
:- I like considering the problem from the point of view of the edit transcript.

The edit transcript of the optimal alignment will end with one of the four edit operations，I，D，S or M．
.. The edit transcript of the optimal alignment will end with one of the four edit operations, I, D, S or M.
.- We don't know which one! Therefore, let's consider all 4 possibilities.
:" The edit transcript of the optimal alignment will end with one of the four edit operations, I, D, S or M.
:We don't know which one! Therefore, let's consider all 4 possibilities.
: First, consider a transcript ending with the operation I.

$$
\begin{array}{rc}
& I \\
S_{1} & - \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

where $S_{2}(m)$ is the last symbol of S_{2}. Make sure to understand the details of above illustration. S_{2} has been decomposed into a prefix and the last symbol, $S_{2}[1, m-1] S_{2}(m)=S_{2}$, a dash symbol has been added to the end of S_{1}.
:" The edit transcript of the optimal alignment will end with one of the four edit operations, I, D, S or M.
:We don't know which one! Therefore, let's consider all 4 possibilities.
:F First, consider a transcript ending with the operation I.

$$
\begin{array}{rc}
& I \\
S_{1} & - \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

where $S_{2}(m)$ is the last symbol of S_{2}. Make sure to understand the details of above illustration. S_{2} has been decomposed into a prefix and the last symbol, $S_{2}[1, m-1] S_{2}(m)=S_{2}$, a dash symbol has been added to the end of S_{1}.
:- Assuming this transcript leads to an optimal alignment, how many edit operations are needed to transform S_{1} into S_{2} ?

Similarly for D (deletion),

$$
\begin{array}{rc}
& D \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2} & -
\end{array}
$$

" and S (substitution),

$$
\begin{array}{cc}
& S \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

:" and M (match),

$$
\begin{array}{cc}
& M \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

Obviously, only if $S_{1}(n)=S_{2}(m)$!
:" and M (match),

$$
\begin{array}{cc}
& M \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

Obviously, only if $S_{1}(n)=S_{2}(m)$!
For each case, how many edit operations are needed to transform S_{1} into S_{2} ?

$$
\begin{array}{rc}
& I \\
S_{1} & - \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

The number of edit operations required is?

$$
\begin{array}{rc}
& I \\
S_{1} & - \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

The number of edit operations required is?

$$
D\left(S_{1}, S_{2}[1, m-1]\right)+1
$$

$$
\begin{array}{rc}
& D \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2} & -
\end{array}
$$

The number of edit operations required is?

$$
\begin{array}{rc}
& D \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2} & -
\end{array}
$$

The number of edit operations required is?

$$
D\left(S_{1}[1, n-1], S_{2}\right)+1
$$

$$
\begin{array}{cc}
& S \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

The number of edit operations required is?

$$
D\left(S_{1}[1, n-1], S_{2}[1, m-1]\right)+1
$$

$$
\begin{array}{cc}
& M \\
S_{1}[1, n-1] & S_{1}(n) \\
S_{2}[1, m-1] & S_{2}(m)
\end{array}
$$

The number of edit operations required is?

$$
D\left(S_{1}[1, n-1], S_{2}[1, m-1]\right)+0
$$

:- Let's change the representation slightly so that $D(i, j)$ denotes the edit distance of $S_{1}[1, i]$ and $S_{2}[1, j]$
:- Let's change the representation slightly so that $D(i, j)$ denotes the edit distance of $S_{1}[1, i]$ and $S_{2}[1, j]$
:- In other words, $D(i, j)$ represents the minimum number of edit operations that are necessary to transform the first i characters of S_{1} into the first j characters of S_{2}
:- Let's change the representation slightly so that $D(i, j)$ denotes the edit distance of $S_{1}[1, i]$ and $S_{2}[1, j]$
:In other words, $D(i, j)$ represents the minimum number of edit operations that are necessary to transform the first i characters of S_{1} into the first j characters of S_{2}
.D Does it mean that $S_{1}(i)$ and $S_{2}(j)$ are aligned?
:- Let's change the representation slightly so that $D(i, j)$ denotes the edit distance of $S_{1}[1, i]$ and $S_{2}[1, j]$
: In other words, $D(i, j)$ represents the minimum number of edit operations that are necessary to transform the first i characters of S_{1} into the first j characters of S_{2}
:- Does it mean that $S_{1}(i)$ and $S_{2}(j)$ are aligned?

- Consider $S_{1}=\underline{A T T G C}, S_{2}=\underline{A G C}$, and $D(3,1)$, it does not mean that $S_{1}(3)=T$ is aligned against $S_{2}(1)=A$
:- Let's change the representation slightly so that $D(i, j)$ denotes the edit distance of $S_{1}[1, i]$ and $S_{2}[1, j]$
:" In other words, $D(i, j)$ represents the minimum number of edit operations that are necessary to transform the first i characters of S_{1} into the first j characters of S_{2}
$:$ Does it mean that $S_{1}(i)$ and $S_{2}(j)$ are aligned?
". Consider $S_{1}=\underline{A T T G C, ~} S_{2}=\underline{A} G C$, and $D(3,1)$, it does not mean that $S_{1}(3)=T$ is aligned against $S_{2}(1)=A$
: Any other alignment than the one below would involve 3 or more edit operations (2 deletions and one substitution) S1 ATT

S2 A--
:" Let's change the representation slightly so that $D(i, j)$ denotes the edit distance of $S_{1}[1, i]$ and $S_{2}[1, j]$
:- In other words, $D(i, j)$ represents the minimum number of edit operations that are necessary to transform the first i characters of S_{1} into the first j characters of S_{2}
$\%$ Does it mean that $S_{1}(i)$ and $S_{2}(j)$ are aligned?
:. Consider $S_{1}=\underline{A T T G C,} S_{2}=\underline{A} G C$, and $D(3,1)$, it does not mean that $S_{1}(3)=T$ is aligned against $S_{2}(1)=A$
:" Any other alignment than the one below would involve 3 or more edit operations (2 deletions and one substitution) S1 \quad ATT
S2
S
A--
:- Here, the edit transcript of the optimal alignment is ending with a deletion (D)
= Let's see if we can find some base conditions.
L. Let's see if we can find some base conditions. $D(0,0)=$?

:- Let's see if we can find some base conditions. $D(0,0)=$?
:- Surely, $D(0,0)=0$,
:" Let's see if we can find some base conditions. $D(0,0)=$?
:- Surely, $D(0,0)=0$, no operations are needed to transform the first zero characters of S_{1} into the first zero characters of S_{2}.
:" Let's see if we can find some base conditions. $D(0,0)=$?
:- Surely, $D(0,0)=0$, no operations are needed to transform the first zero characters of S_{1} into the first zero characters of S_{2}.
: $D(i, 0)$ means transforming the first i characters of S_{1} into the first zero characters of S_{2}. How many operations?
:" Let's see if we can find some base conditions. $D(0,0)=$?
:- Surely, $D(0,0)=0$, no operations are needed to transform the first zero characters of S_{1} into the first zero characters of S_{2}.
: $D(i, 0)$ means transforming the first i characters of S_{1} into the first zero characters of S_{2}. How many operations? One needs to delete i characters, we therefore have,

$$
D(i, 0)=i
$$

:" Let's see if we can find some base conditions. $D(0,0)=$?
:- Surely, $D(0,0)=0$, no operations are needed to transform the first zero characters of S_{1} into the first zero characters of S_{2}.
: $D(i, 0)$ means transforming the first i characters of S_{1} into the first zero characters of S_{2}. How many operations? One needs to delete i characters, we therefore have,

$$
D(i, 0)=i
$$

:- Similarly, to transform the first j characters of S_{2} into the first zero characters of S_{1}, i.e. $D(0, j)$, we have delete the first j characters of S_{2},

$$
D(0, j)=j
$$

.- For the general case, how was $D(i, j)$ obtained?
:- For the general case, how was $D(i, j)$ obtained? Clearly, it was obtained by applying one of the three (four) possible edit operations: insertion, deletion, substitution (match), to a smaller alignment
:- For the general case, how was $D(i, j)$ obtained? Clearly, it was obtained by applying one of the three (four) possible edit operations: insertion, deletion, substitution (match), to a smaller alignment
"- Given, two sequences S_{1} and S_{2} of length m and n respectively, which particular value of D solves the problem?
F. For the general case, how was $D(i, j)$ obtained? Clearly, it was obtained by applying one of the three (four) possible edit operations: insertion, deletion, substitution (match), to a smaller alignment
:- Given, two sequences S_{1} and S_{2} of length m and n respectively, which particular value of D solves the problem?
:- $D(m, n)$ is the value that we are looking for. It is the minimum number of edit operations that are needed to transform the first m characters of S_{1} into the first n characters of S_{2}

Recurrence equation for the edit distance problem

Base conditions,

$$
\begin{gathered}
D(0,0)=0 \\
D(i, 0)=i, i \in 1 \ldots n \\
D(0, j)=j, j \in 1 \ldots m
\end{gathered}
$$

General case,

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1, \\
D(i, j-1)+1, \\
D(i-1, j-1)+1, \text { if } S_{1}(i) \neq S_{2}(j) \\
D(i-1, j-1)+0, \text { if } S_{1}(i)=S_{2}(j)
\end{array}\right.
$$

Solution,

$$
D(m, n)
$$

Two strategies:
" Top-down
: Bottom-up

Top-down computation

:- In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$

Top-down computation

: In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$ The computation of $D(m-1, n)$ forces the computation of $D(m-2, n), D(m-1, n-2)$ and $D(m-2, n-1)$

Top-down computation

: In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$
: The computation of $D(m-1, n)$ forces the computation of $D(m-2, n), D(m-1, n-2)$ and $D(m-2, n-1)$
:" The computation of $D(m, n-1)$ forces the computation of $D(m-1, n-1), D(m, n-2)$ and $D(m-1, n-2)$

Top-down computation

:- In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$
: The computation of $D(m-1, n)$ forces the computation of $D(m-2, n), D(m-1, n-2)$ and $D(m-2, n-1)$
:- The computation of $D(m, n-1)$ forces the computation of $D(m-1, n-1), D(m, n-2)$ and $D(m-1, n-2)$
: The computation of $D(m-1, n-1)$ forces the computation of $D(m-2, n-1), D(m-1, n-2)$ and $D(m-2, n-2)$

Top-down computation

\%- In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$
: The computation of $D(m-1, n)$ forces the computation of $D(m-2, n), D(m-1, n-2)$ and $D(m-2, n-1)$
: The computation of $D(m, n-1)$ forces the computation of $D(m-1, n-1), D(m, n-2)$ and $D(m-1, n-2)$
: The computation of $D(m-1, n-1)$ forces the computation of $D(m-2, n-1), D(m-1, n-2)$ and $D(m-2, n-2)$
:- Many values will be re-computed several times in the top-down computation

Top-down computation

: In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$
:" The computation of $D(m-1, n)$ forces the computation of $D(m-2, n), D(m-1, n-2)$ and $D(m-2, n-1)$
: The computation of $D(m, n-1)$ forces the computation of $D(m-1, n-1), D(m, n-2)$ and $D(m-1, n-2)$
: The computation of $D(m-1, n-1)$ forces the computation of $D(m-2, n-1), D(m-1, n-2)$ and $D(m-2, n-2)$

- Many values will be re-computed several times in the top-down computation
:- It is easy to see that an exponential number of operations will be performed!

Top-down computation

: In the top-down computation, a first call is made to compute $D(m, n)$, which will force the computation of $D(m-1, n), D(m, n-1)$ and $D(m-1, n-1)$
: The computation of $D(m-1, n)$ forces the computation of $D(m-2, n), D(m-1, n-2)$ and $D(m-2, n-1)$
: The computation of $D(m, n-1)$ forces the computation of $D(m-1, n-1), D(m, n-2)$ and $D(m-1, n-2)$
: The computation of $D(m-1, n-1)$ forces the computation of $D(m-2, n-1), D(m-1, n-2)$ and $D(m-2, n-2)$
:- Many values will be re-computed several times in the top-down computation
:- It is easy to see that an exponential number of operations will be performed!
:" A complete 3 -way tree of depth m has $\Theta\left(3^{m}\right)$ nodes.

Bottom-up (tabular) computation

: Hum, but there are only $(n+1) \times(m+1)$ distinct $D(i, j)$ values!

Bottom-up (tabular) computation

: Hum, but there are only $(n+1) \times(m+1)$ distinct $D(i, j)$ values!
\#- The bottom-up computation proceeds with the small values of i and j first.

Bottom-up (tabular) computation

: Hum, but there are only $(n+1) \times(m+1)$ distinct $D(i, j)$ values!
:" The bottom-up computation proceeds with the small values of i and j first.
". Furthermore, the algorithm memorizes (caches) the values of $D(i, j)$ so that a given $D(i, j)$ is computed only once.

Bottom-up (tabular) computation (continued)

1. This technique is known as dynamic programming;
2. Dynamic programming can only be applied to problems with a structure known as the Bellman principle.

Bottom-up computation

where $s(i, j)=1$ if $S_{1}(i) \neq S_{2}(j)$ and 0 otherwise.

Bottom-up computation

\Rightarrow Base conditions.

Bottom-up computation

	1	1	2	3	4	5	
		-	A	T	C	G	C
	-	-	0	1	2	3	4
1	1	A	1	0	1	2	3
	G	2	1	1	2		
	G	2					
3	G	3					
	C	4					

\Rightarrow Notice the two alternatives: $D(1,2)+1=D(2,2)+1=2$

Bottom-up computation

	0		1	2	3	4	5
		-	A	T	C	G	C
0	-	0	1	2	3	4	5
1	A	1	0	1	2	3	4
2	G	2	1	1	2	2	3
3	G	3	2	2	2	2	3
4	C	4	3	3	2	3	2

\Rightarrow The final result is $D(4,5)=2$. What does it tell us?

Bottom-up computation

	0		1	2	3	4	5
		-	A	T	C	G	C
0	-	0	1	2	3	4	5
1	A	1	0	1	2	3	4
2	G	2	1	1	2	2	3
3	G	3	2	2	2	2	3
4	C	4	3	3	2	3	2

\Rightarrow We now know that one sequence can be transformed into the other with as little as 2 edit operations!

Remarks

How do you fill up the matrix: by row? by column? by diagonal? it is not important?

Remarks

". How do you fill up the matrix: by row? by column? by diagonal? it is not important?
How many cells can be filled simultaneously? Leading to parallel computation.

Remarks

". How do you fill up the matrix: by row? by column? by diagonal? it is not important?
How many cells can be filled simultaneously? Leading to parallel computation.
$D(4,5)=2$, it's possible to transform S_{1} into S_{2} with two edit operations, which ones?

Remarks

". How do you fill up the matrix: by row? by column? by diagonal? it is not important?
How many cells can be filled simultaneously? Leading to parallel computation.
. $D(4,5)=2$, it's possible to transform S_{1} into S_{2} with two edit operations, which ones?
:- How to compute the actual alignment?

Dynamic Programming

	0		1	2	3	4	5
		-	A	T	C	G	C
0	-	0	1	2	3	4	5
1	A	1	0	1	2	3	4
2	G	2	1	1	2	2	3
3	G	3	2	2	2	2	3
4	C	4	3	3	2	3	2

\Rightarrow How to recover the underlying alignment?

	0		1	2	45		
		-	A	T	C	G	C
0	-	0	1	2	3	4	5
1	A	1	0	-1	-2	3	- 4
2	G	2	1	1	2	2	- 3
3	G	3	2	Q	2	2	${ }_{\square} 1$
4	C	4	3	[$\begin{array}{r}1 \\ 3\end{array}$	$2 .$	$\begin{array}{r} 1 \\ 0 \\ \hline \end{array}$	- 2

Traceback

In cell $D(i, j)$:
set \nwarrow if $D(i-1, j-1)+s\left(S_{1}(i), S_{2}(j)\right)=D(i, j)$,
$\#$ set \leftarrow if $D(i, j-1)+1=D(i, j)$,
= set \uparrow if $D(i-1, j)+1=D(i, j)$.

Traceback (continued)

To recover the edit transcript, the alignment, follow a path from $D(n, m)$ to $D(0,0)$. Interpreting each pointer as follows:
$\because \leftarrow$: deletion of $S_{1}(j)$,
" \uparrow : insertion of $S_{2}(i)$,
\nwarrow : match of $S_{1}(i)$ and $S_{2}(j)$ if $S_{1}(i)=S_{2}(j)$ and substitution otherwise.

The two optimal alignments:
ATCGC ATCGC
A-GGC or AG-GC
\Rightarrow It takes $\mathcal{O}(n+m)$ time to compute the traceback for one path.

Remarks

:- There was more than one optimal alignment.

Remarks

:" There was more than one optimal alignment.
:" Only one solution was recovered, but we could have recorded all of them.

Remarks

:- There was more than one optimal alignment.
: Only one solution was recovered, but we could have recorded all of them.
:How many optimal alignments are there?

Remarks

:- There was more than one optimal alignment.
: Only one solution was recovered, but we could have recorded all of them.
:How many optimal alignments are there?
: Can you enumerate them?

References

:- Gusfield, D. (1997) Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge Press, pp. 215-224. (MRT General QA 76.9 A43 G87 1997)
:- Jones N.C. and Pevzner P.A. (2004) An Introduction to Bioinformatics Algorithms, MIT Press, pp. 147-178. (QH324.2 b.J66 2004)
:- Durbin, R. et al $(1998,2000)$ Biological sequence analysis: probabilistic models of proteins and nucleic acids.
Cambridge University Press. §2
(MRT General QP 620 .B576 1998)

References

Pensez-y!

L'impression de ces notes n'est probablement pas nécessaire!

