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Abstract: Comparative RNA sequence analyses have contributed remarkably 
accurate predictions. The recent determination of the 30S and 50S ribosomal 
subunits bringing more supporting evidence. Several inference tools are 
combining free energy minimisation and comparative analysis to improve the 
quality of secondary structure predictions. This paper investigates the following 
hypotheses: 
• The use of three input sequences improves the average accuracy compared 

to predictions based on two input sequences 
• The worse prediction (minimum accuracy) for any sequence should be 

more accurate when three input sequences are used rather than two 
• Finally, the consensus structure of three sequences is probably less 

representative of the individual sequences. The average coverage should be 
less. 
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1 Introduction 

The repertoire of known non-protein-coding RNAs (ncRNAs) is growing rapidly  
(Storz, 2002). The housekeeping roles of RNAs, such as those of the tRNA, rRNA, 
RNAseP, snRNA and snoRNA, were established early. In the recent years, it has become 
clear that RNAs also have important regulatory functions. Examples include microRNAs, 
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which regulate the expression of protein genes by targeting a complementary region of 
their mRNAs. MicroRNAs constitute one of the most abundant classes of regulatory 
molecules, and are key to many developmental processes (Bartel, 2004). Several 
discoveries collectively demonstrate that untranslated messenger RNAs can sense the 
level of metabolites, and modulate the expression of certain genes accordingly. Those 
RNAs are referred to as RNA sensors and riboswitches (Nudler and Mironov, 2004;  
Lai, 2003). Post transcriptional regulation of gene expression often involves secondary 
structure elements located in the untranslated regions of mRNAs (Mignoe et al., 2003). 
Consequently, detailed knowledge of RNA secondary and tertiary structure is essential to 
help understand RNA functions. 

RNA secondary structure prediction methods have been thoroughly evaluated.  
In particular, Gardner and Giegerich (2004) have performed a comprehensive evaluation 
of comparative RNA structure prediction methods. Doshi et al. (2004) reviewed 
specifically free energy minimisation methods that are using the nearest neighbour 
model. One of their main conclusions is that free energy minimisation methods based on 
the nearest neighbour model work best for shorter sequences, such as tRNA or 5S rRNA, 
for which they reported an average accuracy for predictions of 69% and 71% 
respectively. 

Recently, Mathews and Turner developed and published a software system 
combining free energy minimisation and comparative sequence analysis for finding the 
minimum free energy structure common to two input sequences (Mathews and  
Turner, 2002). The computer system, called Dynalign, greatly improves the accuracy of 
secondary structure predictions compared to free energy minimisation alone. 

Herein, we extend this algorithm to use three input sequences rather than two, and 
investigate the performance of the new computer program. We called this software 
system eXtended-Dynalign, or X-Dynalign for short, to emphasise its origin. 

This paper is organised as follows. Section 2 outlines the algorithm. In Section 3, the 
main hypotheses to be empirically evaluated are laid out, the datasets are described, and 
the evaluation measures are defined. Section 4 presents the results. Section 5 concludes 
and discusses the results. 

2 Algorithm 

Dynalign is a pragmatic implementation of the algorithm proposed by Sankoff for solving 
simultaneously the RNA folding and alignment problems (Sankoff, 1985). Dynalign is 
restricted to two input sequences, while the original proposal was formulated for an 
arbitrary set of N input sequences. Also, Dynalign introduces a constraint on the 
maximum distance between aligned nucleotides so as to reduce the execution time. This 
is analogous to the banding technique that is used for sequence alignment. 

X-Dynalign is a direct extension of Dynalign. It takes as input, three sequences and 
produces a three way sequence alignment as well as a common secondary structure.  
The objective function consists of a linear combination of the free energy of each 
sequence, given the common secondary structure, and an empirical term for gap 
penalties. 

total sequence 1 sequence 2 sequence 3 gapsG G G G G° ° ° ° °∆ = ∆ + ∆ + ∆ + ∆  
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where sequence iG°∆  for i ∈ {1, 2, 3} represents the conformational free energy of the 

sequence i when folded onto the common secondary structure, according to the nearest 
neighbour model. 

The algorithm has two steps: fill and traceback. Three sets of recurrence equations 
define the objective function: W, V and W9. Equations of the form W(i, j; k, l; m, n) 
represent the minimum free energy for the optimal alignment and structure prediction of 
S1[i..j], S2[k..l] and S3[m..n], when i, k and m are aligned, and j, l and n are also aligned, 
where Si denotes the sequence i and Si[a..b] represents the fragment of Si comprising the 
nucleotides a, a + 1, ..., b. Equations of the form V(i, j; k, l; m, n) represent the minimum 
free energy assuming that i and j, k and l, and m and n are simultaneously aligned but also 
that i : j forms a base pair, k : l forms a base pair and m : n forms a base pair.  
Finally, W9(i, k, m) represents the minimum free energy for the prefix alignment of 
S1[1..i], S2[1..k] and S3[1..m]. 

The matrices V and W are filled by considering every 5-mer (smallest hairpin 
structure), 6-mer, 7-mer, and so forth up to length 1S . Figure 1 illustrates the fill step. 
Whenever i : j, k : l or m : n is a noncanonical base pair, then V is set to a large positive 
free energy value (infinity). If all three pairs i : j and k : l and m : n can form canonical 
base pairs (A : U, G : C, or G : U) then V is the minimum of three terms. 

V = min[V1, V2, V3] 

Figure 1 Pseudocode illustrating the fill step. The constant minloop defines the minimum 
substructure that can form a base pair 

 

The recurrence V1 represents the sum of the free energies of S1[i..j], S2[k..l] and S3[m..n] 
given the common structure (a hairpin). 

1 hairpin hairpin hairpin gaps( , ) ( , ) ( , ) (no. of gaps)V G i j G k l G m n G° ° ° °= ∆ + ∆ + ∆ + ∆  
The recurrence equation V2 represents the sum of the free energies for a helix extension, 
(i′ = i + 1 and j′ = j – 1), a bulge loop (i′ = i + 1 or j′ = j – 1, but not both) or an internal 
loop (otherwise). 

1 2 32 motif motif motifmin[ ( , ; , ; , ) ]V V i j k l m n G G G° ° °= ′ ′ ′ ′ ′ ′ + ∆ + ∆ + ∆  
such that i < i′ < j′ < j, k < k′ < l′ < l and m < m′ < n′ < n. There are two user  
defined constraints to help in reducing the runtime, M and S. The constraint M  
restricts the maximum distance between aligned nucleotides, specifically,  
i′ – M ≤ k' ≤ i′ + M, j′ – M ≤ l′ ≤ j′ + M, k′ – M ≤ m' ≤ k′ + M and l′ – M ≤ n′ ≤ l′ + M. 
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Finally, S limits the size of internal loops, i < i′ ≤ i + S, j – S ≤ j′ < j, k < k′ ≤ k + S, 
 l – S ≤ l′ < l, m < m′ ≤ m + S and n – S ≤ n′ < n. Herein, S is set to 20. The term 1motifG°∆  
is the free energy of a hairpin closed by i : j and i′ : j′. The terms 2motifG°∆  and 3motifG°∆  are 
defined similarly with respect to sequences 2 and 3. 

The recurrence V3 describes the lowest sum of free energies for a multibranch loop 
structure closed by the pairs i : j, k : l and m : n. There are 64 cases representing all 
possible dangling ends situations. The general form of these 64 equations (κ) is as 
follows. 

3 3( , ; , ; , ) ( 1, ; 1, ; 1, )V W a i b k c m W i d k e m f Gκ κ
°

− −= ′ ′ ′ + ′ + ′ + ′ + + ∆  

where °
3G κ−∆  is a specific term for each equation that takes into account the free energies 

of the dangling ends, multibranch loop closure, helix terminating in a multibranch loop, 
unpaired nucleotides and gaps. The value of a is i + 1 or i + 2 depending on the particular 
case (equation), similarly, b is k + 1 or k + 2, c is m + 1 or m + 2, d is j – 1 or j – 2, e is 
l – 1 or l – 2, and f is n – 1 or n – 2 depending on the particular situation modelled by 
equation. The parameters i′, k′ and m′, are restricted to i < i′ < j, k < k′ < l and m < m′ < n.  

W is defined as follows. 

W = min[W1,W2,W3] 

The recurrence W1 represents all 64 ways of adding unpaired nucleotides to a multibranch 
loop. 

° °
1 unpaired nucleotides in MBL loop gap( , ; , ; , )W W a b c d e f x G y G= + ∆ + ∆

 
The value of a = i or i + 1 depending on the particular case (equation), similarly, b = j or 
j – 1, c = k or k + 1, d = l or l – 1, e = m or m + 1, and f = n or n – 1 depending on the 
particular situation modelled by equation. The number of gaps is y. 

W2 models the free energy of helix termini. The values of a, b, c, d, e and f are 
defined as above. 

° ° °
2 unpaired nucleotides in MBL loop MBL closure gap( , ; , ; ; ) 3W V a b c d e f x G G y G= + ∆ + ∆ + ∆  

Multibranch loops consisting of three or more branching helices are modelled by W3. 

W3 = min[W(i, i′; k, k′, m, m′) + W(i′ + 1, j; k′ + 1, l; m′ + 1, n)] 

where, i < i′ < j, k < k′ < l, m < m′ < n, i′ – M ≤ k' ≤ i′ + M and k′ – M ≤ m' ≤ k′ + M. 
Finally, W9 stands for the free energy for the prefix alignment of S1[1..i], S2[1..k] and 

S3[1..n].  

1,...,8
9 min 9W W κκ∈

=
 

Cases κ ∈1, …, 7 represent all the ways for adding one or two gaps. 
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= − + ∆

= − + ∆

= − − − + ∆

= + °
unpaired nucleotides in MBL loop

° ° °
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x G
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∆

+ ∆ + ∆ +

 

where i′ < i, k′ < k, m′ < m, a is i′ – 1 or i′ – 2, b is k′ – 1 or k′ – 2, c is m′ – 1 or m′ – 2, 
d = i or i – 1, e = k or k – 1 and f = m or m – 1. 

A detailed description of all the recurrence equations can be found in  
Masoumi (2005). The recurrence equations are solved using dynamic programming. The 
traceback starts at 1 2 39( , , )W S S S  and finds the corresponding structure. The overall 

algorithm requires 
2 4

1( )O S M  space and 
3 6

1( )O S M  time, where M is a constant that 
limits the maximum distance between aligned nucleotides. 

3 Methodology 

3.1 Experiments 

The following hypotheses are tested  

• The use of three input sequences should improve the average accuracy compared to 
predictions based on two input sequences. When three input sequences are used, the 
likelihood that they all three fold into a bad free energy minimum should be less than 
when two input sequences are used. 

• The worst prediction (minimum accuracy) should be more accurate when three input 
sequences are used rather than two.  

• Finally, the secondary structure common to three input sequences should be less 
representative of the individual sequences. Consequently, the average coverage 
should be less.  

But first, we determine empirically the optimum gap penalties for these datasets. 

3.2 Performance measures 

We call references, the secondary structures that were obtained from the tRNA 
compilation by Sprinzl and the Comparative RNA Web Site. We define as true positives 
(TP) the base pairs that occur in both reference and predicted structures, as false positives 
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(FP), the base pairs that occur in the predicted structure but not in the reference one, and 
as false negatives (FN), the base pairs that are occurring in the reference structure but not 
in the predicted one. Offsets were not allowed. 

The positive predictive value (sometimes called PPV, specificity or accuracy) is 
defined as the fraction of the predicted base pairs that are also present in the reference 
structure, TP/(TP + FP). The sensitivity (coverage) is defined as the fraction of the base 
pairs from the reference structure that are correctly predicted, TP/(TP + FN).  
Finally, we also measured the Matthews Correlation Coefficient, as defined by  
Gorodkin et al. (2001): 

TP TP .
TP + FN TP + FP

×  

3.3 Datasets 

Input sequences were selected to be challenging cases for MFOLD (Zuker and  
Stiegler, 1981; Zuker, 1989), a widely used computer program for the determination of 
RNA secondary structure using a single sequence as input, see Tables 1–4. Furthermore, 
the sequences were selected so that they could be aligned optimally with a small value of 
M. Obviously this information would not be known in advance in most cases. Also, the 
input sequences were filtered so that the maximum pairwise identity was less than 90%. 
A total of ten tRNA sequences from the original paper were used. Their pairwise 
sequence identity varies from 27.3% to 68.8%. The secondary structure assignments were 
taken from the compilation by Sprinzl et al. (1998) and Sprinzl and Vassilenko (2003). A 
set of 13 5S rRNA sequences was built using information obtained from the Comparative 
RNA Web Site (Gutell, 2004; Cannone et al., 2002a, 2002b). Their pairwise sequence 
identity varies from 47.2% to 88.2%. 

Table 1 tRNA dataset 

Id Length Description 

RD0260 77 Asp Phage T5 (Virus) 

RD0500 76 Asp Haloferax volcanii (Archae) 

RD4800 71 Asp Aedes albopictus (Mitochondria, Animal) 

RE2140 76 Glu Synechocystis sp. (Eubacteria) 

RE6781 76 Glu Hordeum vulgare (Chloroplast) 

RF6320 76 Phe Schizosaccharomyces pombe (Cytoplasm, Fungi) 

RL0503 88 Leu Haloferax volcanii (Archae) 

RL1141 89 Leu Mycoplasma capricolum (Eubacteria) 

RS0380 88 Ser Halobacterium cutirubrum (Archae) 

RS1141 92 Ser Mycoplasma capricolum (Eubacteria) 
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Table 2 Performance measures for MFOLD on the tRNA dataset 

Id Sensibility PPV MCC 
RD0260 33.3 29.2 31.2 
RD0500 47.6 43.5 45.5 
RD4800 42.9 56.2 49.1 
RE2140 95.2 87 91 
RE6781 33.3 28 30.6 
RF6320 0 0 0 
RL0503 0 0 0 
RL1141 40 43.5 41.7 
RS0380 52 56.5 54.2 
RS1141 19.2 25 21.9 

Table 3 5S rRNA dataset 

y Length Description 
AJ131594 117 Delftia acidovorans 
AJ251080 117 Geobacillus stearothermophilus 
K02682 120 Micrococcus luteus 
M10816 119 Geobacillus stearothermophilus 
M16532 121 Thermus sp. 
M25591 117 Geobacillus stearothermophilus 
V00336 120 Escherichia coli 
X02024 119 Sporosarcina pasteurii 
X02627 120 Agrobacterium tumefaciens 
X04585 119 Rhodobacter capsulatus 
X08000 122 Arthrobacter oxydans 
X08002 122 Arthrobacter globiformis 

Table 4 Performance measures for MFOLD on the 5S rRNA dataset 

y Sensibility PPV MCC 
AJ131594 23.7 60 37.7 
AJ251080 26.3 45.5 34.6 
D11460 15.8 37.5 24.3 
K02682 20.5 40 28.6 
M10816 31.6 70.6 47.2 
M16532 10.3 21.1 14.7 
M25591 26.3 45.5 34.6 
V00336 37.5 65.2 49.5 
X02024 15.8 37.5 24.3 
X02627 38.5 68.2 51.2 
X04585 0 0 0 
X08000 0 0 0 
X08002 0 0 0 
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4 Results 

4.1 Calibrating gap penalties 

In Mathews and Turner (2002), the optimal gap penalty was found to depend on the class 
of RNA; 2.0 Kcal/mol and 0.4 Kcal/mol for the tRNA and 5S rRNA, respectively. 
Accordingly, we performed two sets of experiments to measure the effect of various gap 
penalty scores on PPV, sensitivity and MCC. Since these experiments are time 
consuming, only six gap penalty scores were tested, 0.0, 0.25, 0.5, 1.0, 2.0, 4.0, and only 
triples that could be aligned with a small value of M, here 5, were selected. In all, 105 and 
90 predictions were made for the tRNA and 5S rRNA, respectively. The box plots show 
that all three performance measures vary greatly for gap penalties less than 0.5; the effect 
is less on the 5S entries, see Figures 2 and 3. For the experiments presented herein, we 
have chosen a gap penalty score of 1.0 Kcal/mol, because it corresponds to the maximum 
sensitivity for both datasets, tRNA and 5S rRNA. 

Figure 2 Effect of various gap penalty scores on PPV, sensitivity and MCC for the tRNA dataset 
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Figure 3 Effect of various gap penalty scores on MCC, PPV and Sensitivity for the 5S dataset 

    

    

4.2 Comparative analysis 

We present the analysis of the tRNA data first. Nine runs, 27 predictions, were made 
using X-Dynalign, while 19 runs, 38 predictions, were made using Dynalign. The mean 
PPV, sensitivity and MCC are 96.8 ± 7.6, 94.4 ± 7.5 and 95.6 ± 7.3 for  
X-Dynalign, and 92.1 ± 14.6, 89.1 ± 15.7 and 90.5 ± 15.0 for Dynalign. Our data 
represent a subset of that of Mathews and Turner, the PPV for Dynalign measured on this 
subset is 5.7% points higher than theirs. We observe that the use of three sequences 
improves all three indices and reduces their variance, for this particular dataset. 

Tables 5–7 present the performance indices per sequence. Dynalign performed well in 
the best case scenario. For all the sequences, it was possible to find a pair of input 
sequences having a high positive predictive value. The maximum PPV for every entry is 
100, except for that of RS0380. Further analysis shows that the structure of RS0380 
(tRNAAsp Haloferax volcanii) has an extra stem in the variable loop, which X-Dynalign 
predicted more accurately, see Figure 4. For 9 out of 10 experiments, the maximum 
sensitivity for X-Dynalign equals or exceeds that of Dynalign. 
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Table 5 PPV for the tRNA dataset. The subscripts xd and d are designating X-Dynalign and 
Dynalign respectively. N is the number of predictions 

Id Nxd Nd Minxd Mind Maxxd Maxd Avexd Aved 

RD0260 4 5 100 80 100 100 100.0 96.0 
RD0500 4 5 76 45 100 100 82.2 80.8 
RD4800 5 5 100 80 100 100 100.0 96.0 
RE2140 2 4 100 100 100 100 100.0 100.0 
RE6781 2 4 100 77 100 100 100.0 94.3 
RF6320 4 5 95 45 100 100 96.4 89.1 
RL0503 1 2 100 100 100 100 100.0 100.0 
RL1141 2 3 100 70 100 100 100.0 90.3 
RS0380 1 2 100 83 100 87 100.0 85.2 
RS1141 2 3 100 70 100 100 100.0 90.3 

Table 6 Sensitivity for the tRNA dataset 

Id Nxd Nd Minxd Mind Maxxd Maxd Avexd Aved 

RD0260 4 5 95 57 100 100 98.8 90.5 
RD0500 4 5 76 47 95 95 81.0 80.0 
RD4800 5 5 95 57 100 100 99.0 91.4 
RE2140 2 4 100 95 100 100 100.0 98.8 
RE6781 2 4 100 81 100 100 100.0 95.2 
RF6320 4 5 95 47 100 100 96.4 89.5 
RL0503 1 2 95 95 95 95 95.8 95.8 
RL1141 2 3 92 68 92 92 92.0 84.0 
RS0380 1 2 92 80 92 80 92.0 80.0 
RS1141 2 3 88 65 88 92 88.5 82.1 

Table 7 MCC for the tRNA dataset 

Id Nxd Nd Minxd Mind  Maxxd Maxd Avexd Aved 

RD0260 4 5 97 67 100 100 99.4 93.0 
RD0500 4 5 76 46 97 97 81.6 80.4 
RD4800 5 5 97 67 100 100 99.5 93.5 
RE2140 2 4 100 97 100 100 100.0 99.4 
RE6781 2 4 100 79 100 100 100.0 94.8 
RF6320 4 5 95 46 100 100 96.4 89.3 
RL0503 1 2 97 97 97 97 97.9 97.9 
RL1141 2 3 95 69 95 95 95.9 87.1 
RS0380 1 2 95 81 95 83 95.9 82.5 
RS1141 2 3 94 68 94 96 94.1 86.1 
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Figure 4 (a) Reference, (b) Dynalign and (c) X-Dynalign  structures for the tRNA RS0380 

 
(a) (b) (c) 

Both algorithms are seeking to find a structure that minimises a linear combination of the 
free energy of each input sequence given the common structure. Using three input 
sequences should have a positive impact on the worse case scenario. It should be less 
likely that all three input sequences jointly fold into the wrong minimum free energy 
structure than with two input sequences. Our data support this observation: for all the 
entries the minimum PPV for X-Dynalign is the same or better than that of Dynalign.  
For 8 out of 10 sequences, the minimum PPV is 100, in one case, the minimum PPV is 
95, and for one case the minimum PPV is 76. The two sequences leading to the worst 
predictions are RD0500 and RF6320, see Figure 5. Dynalign produces an elongated 
structure. However, using a third sequence increases the accuracy by more than 30% 
points. The structure produced by X-Dynalign has the overall cloverleaf shape; however, 
the nucleotides of the first part and second part of the D-arm are shifted by one and two 
positions, respectively. The minimum coverage is generally good. For all the sequences 
the coverage is 75% or better. For all the sequences the coverage obtained using  
X-Dynalign is the same or better than the coverage obtained using Dynalign. 

Figure 5 (a) Reference, (b) Dynalign and (c) X-Dynalign secondary structures for the tRNA 
RD0500 

 
(a) (b) (c) 

For our second test set we have 19 runs, 57 predictions, using X-Dynalign, and  
29 runs, 58 predictions, using Dynalign. The mean PPV, sensitivity and MCC are 
90.3 ± 5.8, 76.6 ± 5.3 and 83.2 ± 5.5 for X-Dynalign, and 87.7 ± 7.4, 79.2 ± 6.7 and 
83.3 ± 6.7 for Dynalign. For this particular dataset, the performance of both systems is 
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comparable on the basis of the Matthews correlation coefficient. What is gained in 
accuracy is lost in sensitivity. 

Tables 8–10 present the performance indices per sequence. Using three input 
sequences improves the worst (PPV) prediction for 12 out of 13 sequences. Also, for 10 
out of 13 sequences, the minimum PPV obtained is 85% or more. The minimum 
sensitivity is the same or improved for 11 out of 13 sequences. However, the maximum 
sensitivity exceeds that of Dynalign for 2 out of 13 sequences. 

Table 8 PPV for the 5S dataset 

Id Nxd Nd Minxd Mind Maxxd Maxd Avexd Aved 

AJ131594 2 3 100 91 100 100 100.0 94.5 
AJ251080 6 5 88 82 90 86 90.3 84.8 
D11460 6 5 87 66 87 88 87.6 79.4 
K02682 8 9 63 88 100 97 89.1 92.0 
M10816 3 4 90 85 90 88 90.7 87.8 
M16532 1 2 94 77 94 85 94.1 81.8 
M25591 6 5 87 82 90 86 89.8 84.8 
V00336 3 4 75 65 100 100 91.9 91.4 
X02024 9 6 88 82 90 88 90.1 85.8 
X02627 1 2 100 92 100 100 100.0 96.0 
X04585 2 3 72 68 94 93 83.4 82.7 
X08000 5 5 90 88 90 90 90.6 89.4 
X08002 5 5 90 88 90 90 90.6 89.4 

Table 9 Sensitivity for the 5S dataset 

Id Nxd Nd Minxd Mind Maxxd Maxd Avexd Aved 

AJ131594 2 3 86 86 86 89 86.8 87.7 
AJ251080 6 5 76 76 78 84 77.2 79.4 
D11460 6 5 73 63 76 81 74.6 71.1 
K02682 8 9 53 79 84 89 76.3 84.3 
M10816 3 4 76 76 78 84 77.2 80.9 
M16532 1 2 82 71 82 76 82.1 74.3 
M25591 6 5 76 76 78 84 76.7 79.4 
V00336 3 4 62 57 82 90 75.8 78.8 
X02024 9 6 76 73 78 84 77.2 76.8 
X02627 1 2 84 87 84 89 84.6 88.5 
X04585 2 3 63 63 84 81 73.7 74.6 
X08000 5 5 74 74 74 79 74.4 77.5 
X08002 5 5 74 74 74 79 74.4 77.5 
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Table 10 MCC for the 5S dataset 

Id Nxd Nd Minxd Mind  Maxxd Maxd Avexd Aved 

AJ131594 2 3 93 89 93 93 93.2 91.0 
AJ251080 6 5 83 79 84 85 83.5 82.1 
D11460 6 5 80 64 81 85 80.8 75.1 
K02682 8 9 58 85 92 93 82.4 88.1 
M10816 3 4 83 80 84 86 83.7 84.3 
M16532 1 2 87 74 87 81 87.9 78.0 
M25591 6 5 81 79 83 85 83.0 82.1 
V00336 3 4 68 61 90 94 83.5 84.8 
X02024 9 6 83 79 84 86 83.4 81.1 
X02627 1 2 92 90 92 93 92.0 92.2 
X04585 2 3 67 65 89 87 78.4 78.5 
X08000 5 5 82 82 82 83 82.1 83.2 
X08002 5 5 82 82 82 83 82.1 83.2 

The prediction of the 5S rRNA of Micrococcus lutus (K02682) has an accuracy of 63% 
only. We believe that this is due to the fact that single base pair insertion has not been 
implemented yet in X-Dynalign. In the triple K02682, V00336 and X04585, the structure 
of Rhodobacter capsulatus (X04585) has a shorter helix IV and seven base pairs 
compared to eight for the other two structures, see Figure 6. 

Figure 6 (a) Reference, (b) Dynalign and (c) X-Dynalign secondary structures for the 5S rRNA 
K02682 
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Figure 6 (a) Reference, (b) Dynalign and (c) X-Dynalign secondary structures for the 5S rRNA 
K02682 (continued) 
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5 Conclusion and discussion 

We have extended the software system Dynalign to use three input sequences, rather than 
two. The resulting system is called eXtended-Dynalign (X-Dynalign for short). Its 
time/space complexity limits its application to:  

• short sequences (say less than 200 nt)  

• sequences that can be aligned optimally with a small value of M (less than 6), where 
M is the maximum distance of the aligned positions. 

The strengths of Dynalign carry over to the new system. Namely, it improves the 
accuracy of secondary structure predictions compared to predictions based on a single 
input sequence. It requires no sequence homology. 

It also shares some of its limitations. In particular, the gap penalties are treated as a 
separate term in the objective function. The optimal value has to be determined 
empirically. In Mathews and Turner, (2002), it was found that the optimal value for this 
term depends on the class of RNA studied. In our limited experiments, the dependency 
seems less important. It also seems that there is a large plateau where several gap penalty 
scores were leading to a nearly optimal solution; w.r.t. PPV, for example. Our key 
conclusions are: 

• The lowest PPV for any prediction is generally improved when using three input 
sequences 

• The average accuracy is improved 

• The average sensitivity of the algorithm is slightly degrade for the 5S rRNA dataset. 
However, a ‘per sequence’ analysis shows that the majority of the lowest sensitivity 
scores are higher for X-Dyanlign than Dynalign. 

• X-Dynalign is able to reproduce subtle details, such as the prediction of a stem in the 
variable region of certain tRNAs. 

There are several obvious directions for extending this class of algorithms, such as 
handling pseudoknots and reporting suboptimal structures. However, one of the most 
urgent improvements is to reduce the time/space complexity. Several runs presented 
herein take up to week to compute on some of the fastest processors available today. 

A detailed knowledge of the RNA secondary structure is essential for understanding 
the sequence-structure-function relationships. X-Dynalign takes advantage of the 
paramount of data that is accumulating in sequence databases. Because it requires no 
sequence homology, X-Dynalign should be useful in comparative RNA sequence 
analyses. 

6 Availability 

The source code, written in C++, as well as the scripts for calculating the performance 
indices are made available under the GNU General Public Licence from http://bio. 
site.uottawa. ca/software/x-dynalign. Supplementary material, including additional tables 
and figures, can be found on our website. 
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