
Seed 1.0: RNA Secondary Structure Motif Inference

Truong Nguyen and Marcel Turcotte

Copyright c© 2003-05 University of Ottawa

Abstract

Seed is a novel approach for discovering consensus secondary structure motifs in a set of unaligned
RNA sequences[1]. Its representation of secondary structure motifs combine sequence and structure
information. State-of-the-art data structures, suffix arrays in particular, are used to enumerate exhaus-
tively the space of possible motifs. Suffix arrays (SAs) are used for two purposes. First, to enumerate
efficiently stem structures, including internal loops. Second, SAs are used to match secondary structure
expressions. This document serves as a reference manual and it also attempts to give you indications to
help you control the runtime of the program.

1 Installing

Seed is written in ISO C and uses some of extensions of the standard ISO C99 (use the option -std=c99 with
GCC). The software system and its libraries are known to run on Linux (RedHat 9 and Fedora Core 3)/i386
(Makefile.gcc), Solaris 9/Sparc (Makefile.sparc) and Solaris 9/i386 (Makefile.i386). Select the appropriate
Makefile for your system, either copy this file to Makefile or use make -f Makefile.arch.

1.1 LIBRNA (Optional)

Seed makes use of LIBRNA from the Vienna RNA Package to calculate and report the free energy of matching
sequences. In order to enable this feature, you need to install the package first (follow the instructions
therein). Locate and edit the following section of the Makefile,

RNALIB =
RNALIB_INCLUDE =
RNALIB_LIB =
RNALIB_LIBS =

You will need to add the following declaration -DRNALIB to RNALIB so that the C preprocessor includes the
sections for LIBRNA into the compilation. You will also need to give the path to the include and library
directories. Here is a template that we use for our local Linux/i386 installation.

RNALIB = -DRNALIB
RNALIB_INCLUDE = -I/local/bio/sfw/include
RNALIB_LIB = -L /local/bio/sfw/exec/i386-pc-linux-gnu/lib/
RNALIB_LIBS = -lRNA -lm

1.2 Seed

The compilation and installation of Seed is a straight forward process. Type make, possibly make check
and then make install. The default option is to install Seed into the bin subdirectory of the distribution
top directory. This option is controled by the variable BINDIR of the main Makefile. By default, Seed is
statistically linked and does not require any external files, therefore, is can safely been moved to any location
(simply make sure that this directory is found on your PATH).

1

2 Basic usage

Typing seed, seed -h or seed --help lists all the valid options.

> seed

Usage: seed [options] file
where file is a FASTA file that contains k input RNA sequences.

Options:
--seed <n> (default 0)
--stem_min_len <n> (default 3)
--stem_max_gu <n> (default 100)
--min_num_stem <n> (default 1)
--max_num_stem <n> (default 2)
--stem_max_separation <n> (default 150)
--skip_keep_longest_stems (default false)
--loop_min_len <n> (default 4)
--nogu (default false)
--range <n> (default 1)
--max_mismatch <n> (default 2)
--max_fixed_pos <n> (default 100)
--min_base_pair <n> (default 5)
--min_support <n> (default 0.70)

-t --time_limit <n> (default 0)
--save_all_matches (default false)
--save_as_ct (default false)
--save_motifs (default false)

-m --match_file <file> (no default)
-d --destination <dir> (default .)
-p --print_level <n> (default 1)
-q --quiet (default false)
-v --version
-h --help

The minimum requirement is an input FASTA file containing k input RNA sequences.

> seed examples/tRNAs-2.fas

Seed 1.0 [Jul 23 2005] - RNA secondary structure motif inference

Copyright (C) 2003-05 University of Ottawa
All Rights Reserved

This program is distributed under the terms of the
GNU General Public License. See the source code
for details.

[find_all_stems]
[size of the motif list is 164]
[filter_by_support]
[size of the motif list is 146]
[filter_keep_longest_stems]
[size of the motif list is 89]
[fix_all]
[size of the motif list is 391]

2

[combine_all]
[generating all 2 stems motifs]
[size of the motif list is 391]
[done]
[size of the motif list is 958]
[postprocess]
[size of the motif list is 958]
[elapsed time 2 minutes, 34 seconds]
[total number of match operations is 221004]

By default, the first sequence (index 0) is used as the seed. The program will first enumerate all the possible
stems that are at least three nucleotides long, allowing for GU base pairs and up to one mismatch. This
list is filtered to preserve only the motifs that are present in 70% of the input sequences. The algorithm
then creates new motifs, first making the generic stems specific by adding base pairs from the seed sequence.
Secondly, the algorithm combines the one-stem motifs together to produce two-stem motifs. By default,
Seed stops this process at two stems. It reports statistics and then stop. No motifs are saved by default,
this allows you to explore the effect of various options and avoid unfortunate suprises, such as writing out
250 Mbytes of data.

Once a suitable set of options has been found, use one of the many options for saving the results. Here
is a possible scenario.

> mkdir results/01
> seed --quiet --destination results/01 --save_motifs --min_num_stem 3 \
--max_num_stem 100 --range 2 examples/tRNAs-2.fas

The motifs will be saved (in XML format) in files named motif.xml located into subdirectories of the
destination folder. The destination folder also contains a file named params.xml that records the options
that were used for this run.

3 Options

--seed <n> (default 0): This option selects a specific seed sequence. Valid values are integers in the range
0 . . . k − 1, where k is the number of input sequences.

--stem min len <n> (default 3): During the first step of the search, Seed enumerates all the valid stems.
For a given pair of positions i and j, Seed computes the longest extension l such that S[i, i+ l− 1] and
S[j, j− l +1] forms a canonical stem (a stem made of canonical base pairs only, possibly including GU
base pairs), if the current number of mismatches is smaller than the user defined threshold then Seed
repeats this process from i + l + 1 and j − l − 1. This option controls the minum value of l for each
iteration of the extension process.

--stem max gu <n> (default 100): Controls the maximum number of GU base pairs.

--min num stem <n> (default 1): Motifs having less than this number of stems are not reported.

--max num stem <n> (default 2): Stops the algorithm when all the motifs having this many stems have
been produced.

--stem max separation <n> (default 150): In the stem enumeration step, limits the maximum distance
between the start and end of a stem.

--skip keep longest stems (default false): Generates all the stems from stem min len up to the maxi-
mum possible size.

--loop min len <n> (default 4): Defines the minimum size of loops.

--nogu (default false): Disallow GU base pairs.

3

--range <n> (default 1): The number of additional base pairs that are allowed when matching a range
element (when calculating the support of a motif).

--max mismatch <n> (default 2): The maximum number of mismatches that are allowed when enumerat-
ing stems and matching motifs.

--max fixed pos <n> (default 100): The maximum number of base pairs that will be fixed in fix all stem.

--min base pair <n> (default 5): The minum number of base pairs for the sum of all base pairs.

--min support <n> (default 0.70): The fraction of the input sequences that a motif matches to be re-
tained.

-t --time limit <n> (default 0): Limits the execution time to the specified number of minutes.

--save all matches (default false): Simple motifs may match the input sequences at several locations,
with this option all of them will be saved.

--save as ct (default false): Saves the matches as ct (MFOLD) files. This can be convenient to visualise,
compare and cluster the results.

--save motifs (default false): Save the motifs as XML files, creates a directory structure with one direc-
tory per motif.

-d --destination <dir> (default .): Where to save the motifs.

-m --match file <file> (no default): Saves all the matches into a single file.

-p --print level <n> (default 1): Increases/decreases the verbosity.

-q --quiet (default false): Turns off all the traces.

-v --version: Prints the version information.

-h --help: Lists all the options.

4 Controlling the size of the search space

Seed performs a breath-first-search of the secondary structure motif space induced from a seed sequence.
Seed provides many options to control the size of the search space, which can be quite large. A good
understanding of the motif discovery algorithm, its parameters and the problem to solve will help reduce the
execution time.

Seed searches a space of secondary structure motif induced from a seed sequence. Selecting a shorter
input sequence as the seed will greatly reduce the size of the initial list of motifs and, consequently, greatly
reduce the execution time. This leads to a more general observation, reducing the size of the initial list
of motifs reduces the branching factor of the search tree, and will also greatly reduce the execution time.
Other ways to reduce the size of the initial list of motifs include: specifying a small number of fixed positions
(--max fixed pos 0 produces generic motifs). Limiting the maximum separation between elements of a
base pair diminishes the size of the initial list of motif (--stem max separation 30 will produce motifs such
that the maximum distance between any two elements of a pair is 30 nucleotides or less). Requiring a higher
level of support is also an effective way to keep the size of the open list of motifs short.

When everything else fails, imposing a time limit will allow you to obtain some results that hopefully
will help you defining new constraints to further reduce the search space. Seed uses an iterative deepening
algorithm for enumerating the motifs, it will first enumerate all the one-stem, two-stem motifs, and so on.
Using a time constraint allows you to explore the search tree up to a certain depth.

4

References

[1] Truong Nguyen and Marcel Turcotte. Exploring the space of RNA secondary structure motifs using suffix
arrays. In S. Blair et al., editor, 6th International Symposium on Computational Biology and Genome
Informatics (CBGI 2005), pages 1291–1298, Salt Lake City, Utah, USA, July 21-26 2005.

5

