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Abstract 
In the last few years, we have seen a rapid increase of 
the number of known RNA families. For a significant 
fraction of them, the mechanisms of action remain 
unclear. Their signature combines structure and 
sequence information. In most cases, they are difficult 
to identify from sequence alone. Traditional 
approaches to identify RNA motifs seek to find a 
conserved structure with minimum free energy in an 
ensemble of aligned sequences. 

We present a novel approach for discovering 
consensus secondary structure motifs in a set of 
unaligned RNA sequences. The secondary structure 
motifs combine sequence and structure information. 
State-of-the-art data structures, suffix arrays in 
particular, are used to enumerate exhaustively the 
space of possible motifs. Suffix arrays (SAs) are used 
for two purposes. First, to enumerate efficiently stem 
structures, including internal loops. Second, SAs are 
used to match secondary structure expressions. The 
algorithms have been implemented in a software 
system called Seed. 

Applications of the approach on test cases shows 
that i) complex search spaces can be exhaustively 
explored and that ii) the search spaces contains 
biologically relevant candidates. 

Keywords: nucleic acids, structure, motifs discovery. 

1. Background 
The history of molecular biology is punctuated by a 
series of discoveries demonstrating the surprising 
breath of biological roles of RNAs. The identification 
of novel non-protein coding RNAs (ncRNAs) requires 
extensive human examination. This paper presents a 
new software system that allows searching 
exhaustively the space of RNA sequence and structure 
motifs, therefore assisting the identification and 
characterisation of new motifs. 

The repertoire of known ncRNAs has grown 
rapidly[1]. The housekeeping roles of RNAs, such as 
those of tRNA, rRNA, RNAseP, snRNA and snoRNA, 

were discovered early. While in the recent years, it 
became clear that RNAs also have important 
regulatory functions. Examples include microRNAs, 
which regulate the expression of protein genes by 
targeting a complementary region of their mRNAs. 
MicroRNAs constitute one of the most abundant 
classes of regulatory molecules, and are key to many 
developmental processes[2]. Several discoveries 
collectively demonstrate that untranslated messenger 
RNAs can sense the level of metabolites, and 
modulate the expression of certain genes accordingly. 
Those RNAs are referred to as RNA sensors and 
riboswitches, and have been reviewed[3, 4]. Post-
transcriptional regulation of gene expression often 
involves secondary structure elements located in the 
untranslated regions of mRNAs[5]. Through all those 
discoveries, a new understanding of gene expression 
regulation is emerging. 

Lately, several resources have been established to 
help understanding the RNA universe. Sequence and 
functional elements of the 5’ and 3’ untranslated 
regions of eukaryotic mRNAs are collected in the 
UTRdb and UTRsite databases[6]. Sequence 
information is available from the Noncoding RNAs 
database[7]. Finally, Rfam compiles a large collection 
of multiple sequence alignments and covariance 
models for many common non-coding RNA 
families[8]. 

Knowledge about RNA secondary structure 
motifs serves two important purposes. First, an RNA 
secondary structure motif presents the 
essential/conserved features of an RNA family. It 
directs the research efforts by restricting the set of 
hypotheses to be tested. Ultimately, a motif may help 
formulating a mechanism of action. Second, an RNA 
motif helps finding new members of an RNA family. 
Once identified, the candidate must be validated 
experimentally. 

Regular languages have been successfully used to 
characterise DNA and protein sequence patterns. 
Algorithms have been developed to automatically 
infer sequence motifs, either from aligned or 
unaligned sequences. With RNAs, the sequence 
information alone is generally not enough. Members 
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of an RNA gene family cannot be found using only the 
sequence information of other known members. 

Several database searching techniques have been 
developed that combine sequence and structure 
information. Approximate matching and stochastic 
models are two approaches to accommodate for the 
fact that biological data are often incomplete, and may 
contain errors. BIOSMatch is an example of a 
software system for the approximate matching of 
secondary structure expressions[9]. While covariance 
models are examples of the later[10, 11]. Approaches 
that are general, are also extremely time/memory 
consuming. Consequently, specialised programs are 
often developed to recognise members of a given 
family. 

However, there are few algorithms that directly 
address the problem of finding those motifs. Much 
work has been done on predicting RNA structure 
through energy minimization. Simply, the free energy 
of an RNA molecule is modeled as the sum of the 
contributions of independent cycles/loops (so called 
nearest neighbour model[12]). Melting experiments 
are performed to determine the free energy parameters 
for small structures. Since the free energy can be 
decomposed into a sum of independent loop 
contributions, it can be solved exactly and efficiently 
when formulated as a dynamic programming 
problem[13]. Steady progress has been made, mainly 
through the determination of more complete and 
accurate sets of free energy parameters[14]. The 
computer programs mfold[13] and RNAfold[15] are 
two widely used implementations. The performance of 
mfold, versions 2.3 and 3.1, has been evaluated on a 
large dataset[16]. However, there are several reasons 
why free energy minimization can fail. 
• The lowest free energy conformation may not 

coincide with the native conformation. This can 
be due to experimental errors in determining the 
free energy parameters, errors due to the 
extrapolation of the parameters, or simply because 
there are numerous lowest free energy 
conformations, and it can be difficult to 
distinguish the native conformation from the 
others; 

• Certain classes of RNA have more than one active 
structure. This is the case for several RNA 
regulatory elements termed riboswitches[3, 4, 17]; 

• The nearest neighbour model does not take into 
account the contributions of the cellular 
environment: proteins, other RNAs, metabolites 
and solvent. Such contributions may be 
particularly important for modeling regulatory 
elements present the untranslated regions of 
mRNAs. Similarly, RNAs are often modified after 

their transcription, the modifications can play an 
important role while folding; 

• Pseudo-knot structures are often not considered. 
For some RNAs, neglecting the contributions of 
pseudo-knots may entail that the native 
conformation and the lowest free energy 
conformation are quite different. However, taking 
into account pseudo-knots severely increases the 
time/space complexity of the algorithms. There is 
also a lack of experimental data that can be used 
to deduce the free energy parameters. 
The accuracy of the predictions can be increased 

significantly if a multiple sequence alignment is used 
as input. These sequences are assumed to share a 
common secondary structure. Hofacker et al. 
incorporated a new term into the total energy function 
for taking into account covariations[18]. This 
approach has been implemented in the program 
RNAalifold. The number of required input sequences 
is less than that of traditional covariations analyses, 
yet the results are superior to the implementations 
based on a single input sequence. Tahi, Gouy and 
Régnier have taken a different approach deciding not 
to include thermodynamics constraints into their 
program, DCFold[19]. This software system handles 
large sequences, and was reported to effectively 
recover the common secondary structure of rRNAs. 
The relative performance of comparative RNA 
structure prediction approaches has been evaluated 
recently[20]. 

Stochastic context-free grammars are a powerful 
paradigm allowing for both the inference and the 
database searching of secondary structure motifs[10, 
11, 21]. However, the secondary structure inference 
works best when the input consists of a set of aligned 
sequences, and the heavy time/space complexity limits 
their application to small sequences. 

Often, an alignment is not readily available. It 
could be that the similarity of the sequences is too low 
to construct a multiple sequence alignment; 
consequently, knowledge about the secondary 
structure would be required to construct a reliable 
alignment. Or, alternatively, the common motif 
perhaps represents a small portion of each sequence; 
and it can be discontinuous. 

David Sankoff has developed recurrence 
equations to simultaneously fold and align k sequences 
([22], to be more precise, the work also proposes the 
reconstruction of the ancestral sequence on a 
phylogenetic tree, a real “tour de force”). Dynalign is 
an implementation for 2 sequences[23]. It differs from 
the original proposal in that there are no substitution 
costs present in the recurrence equation. Prohibitive 
time/space complexity limits its application to 
sequences that are a few hundreds nucleotides long, 
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and approximately the same size. Indeed, the 
maximum distance between the aligned nucleotides is 
restricted by a factor m, when m ~ n, where n is the 
size of the input sequences, the complexity of the 
algorithm is O(n6). In order to reduce the complexity 
of the problem, Gorodkin et al. are focusing on hairpin 
structures only[24, 25]. 

When a high quality alignment is available, 
comparative analysis has proven to be an effective 
approach[26]. Following the experimental 
determination of the structure of two ribosomal RNAs, 
30S and 50S, [27] reported that over 97% of the base 
pairs predicted by comparative analysis were correct. 
It is accepted that homologous sequences, sequences 
that are related by common ancestry, adopt a similar 
structure. The similarity of the sequences can be low, 
yet the majority of the base pairs will be preserved. 
Consequently, in a multiple sequence alignment that 
reflects this structural homology, pairs of columns that 
correspond to nucleotides involved in base pairs show 
a high degree of covariations (simultaneous 
coordinated changes). Secondary structure elements 
(stems) are seen as pairs of segments i:j, i+1:j-1 … 
with correlated changes. The degree of association is 
often quantified using the mutual information 
content[28, 29]. The analysis is powerful enough to 
detect reliably tertiary interactions as well. The 
application of this approach is limited by 1) the 
availability of related yet divergent sequences and 2) 
more importantly, by the difficulty to build a reliable 
alignment without prior information about the 
structure. Accordingly, comparative analyses are 
mostly done by hand, iteratively, starting with the 
most conserved sequences[16]. 

The methods presented thus far are designed to 
find complete secondary structures. In fact, most 
approaches predict the secondary structure for the 
individual sequences then seek to find common 
secondary structure elements. Sometimes, the 
application requires focusing a restricted subset of the 
secondary structure. We present a method that focuses 
on finding secondary structure motifs. 

2. Algorithms 

2.1. Overview and design issues 
Seed is a data exploration tool specifically designed to 
search a space of conserved RNA secondary structure 
motifs. We list here the main issues that influenced its 
design. The space of valid RNA secondary structures 
is extremely large, even when restricted to a given 
input sequence; exponential w.r.t. the length of the 
input sequence[30]. In order to make this search space 

more tractable, we adopt a data-driven approach. A 
seed sequence serves to induce a search space that is 
exhaustively explored for finding motifs that also 
match a significant fraction of the k input sequences. 
The search space is traversed from the most general to 
the most specific motif. Whenever a motif is found 
that is not supported (does not match enough input 
sequences) the motif and its descendant are pruned 
from the search space. 

The assumption that the input sequences share 
some common features may not be true. Accordingly, 
the motif discovery algorithm performs a “sequential 
covering” of the input sequences. This means the 
algorithm repeatedly selects a sequence, searches the 
space of motifs induced by that sequence, selects the 
“best” motif and removes all the input sequences that 
match the “best” motif. The process stops when all the 
input sequences have been processed. The top level 
organisation of Seed is as follows. 
1. Select a seed sequence; 
2. Construct the most specific motif; 
3. General-to-specific search of the motif space; 
4. Select the “best” motif; 
5. Remove all the input sequences containing the 

selected motif; 
6. If there are no more sequences then stop, 

otherwise goto 1. 
No heuristics are used, the algorithm exhaustively 

explores the space of RNA secondary structure motifs 
for a given input and set of parameters. Execution 
times, although large, are small compared to the whole 
process of identify, proving and characterising RNA 
motifs experimentally. 

2.2. Suffix trees and suffix-arrays 
Suffix trees are a prominent data structure in 
computational biology, powering efficient sequence 
comparison and repeat finding algorithms that can be 
applied to genomic scale data[31, 32]. A related data 
structure, suffix arrays[33], offers some advantages 
over suffix trees, namely reducing the memory 
requirements and easier to implement algorithms[34]. 
Important and recent achievements now allow use of 
suffix arrays every where suffix trees were used[34]. 
Those achievements are: a direct approach for the 
linear-time construction of the suffix array[35-37], an 
algorithm for finding the longest-common-prefix in 
linear-time[38], and simulating the bottom-up[39] and 
top-down[40] traversal of suffix trees, also in linear 
time. We used suffix arrays for the implementation of 
Seed but we will use suffix trees herein for clarity.  
[34] shows the relationships between the two data 
structures. 
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A suffix tree for a text T = t1…tn is a rooted 
labelled tree such that, 
• the edges of the tree are labelled with substrings 

of the text; 
• each internal node has at least two children, with 

the possible exception of the root of the tree; 
• any two outgoing edges of the same internal node 

start with a different letter; 
• every suffix of the text is spelled out on a path 

from the root to a leaf, and that leaf is labeled 
with the start position of that suffix. 
Several algorithms and implementation 

techniques have been proposed for constructing the 
data structure in linear-time and space. Applications 
include pattern matching and repeat finding. A pattern 
P occurs in a text T iff the suffix tree of T contains a 
path (from the root of the tree) that spells P; this 
follows from the fact that P occurs in T iff P is the 
prefix of at least one suffix of T. A suffix tree exposes 
all the internal repeats of a text. By definition, every 
internal node has at least two descendants, 
corresponding to suffixes that share a common prefix, 
spelled out on the path from the root to that node. 

A generalized suffix tree is a suffix tree that 
contains all the suffixes of two or more strings. A 
generalized suffix tree allows finding substrings that 
are common to an ensemble of strings. 

Briefly, a suffix array for a text T = t1….tn is an 
array of integers that specifies the lexicographic order 
of the suffixes of T; each entry of this array is the start 
position a suffix of T. This simple data structure is 
enhanced by pre-calculating other indexing structures 
in order to perform the top-down and bottom-up 
traversal, as well as calculating the longest-common-
prefix. 

2.3. Most specific motif 
The search space is induced from a seed sequence that 
has been selected in the first step of the algorithm. The 
basic algorithm is as follows.  
1. Construct a suffix tree for T and TR;  
2. For every starting position i in T, 1...n; 

a) For every starting position j in TR, such that 
j=|T|-i-L+1; 

b) find the lowest common ancestor, l, of i and j  
c) if the length of the complementary region is 

larger than some user defined value then save 
this stem.  

where TR is the reverse complement of T, and L is 
a user defined constraint on the maximum distance 
between the 5’ end and the 3’ end of a stem. The basic 
algorithm is extended in two ways. First, up to e 
mismatches per stem are allowed. This involves 
adding an inner loop, executed e times. For each 

iteration, i and j are incremented by one. This 
increases the time complexity by a factor e. The 
second extension allows for interior loops; where the 
maximum length for interior loops is bound by a used 
defined constant m. 

The location of each stem is recorded to be used 
in the later stages of the algorithms. Similar ideas have 
been proposed by Gusfield[41], for suffix trees only. 

By using suffix arrays and range minimum query, 
we are enumerating stems more efficiently than 
GPRM[42, 43], O(n + em2Ln) instead of O(L3n). 

2.4. General to specific search 
The search algorithm consists of three distinct phases: 
initialisation, instantiation and composition. During 
the first phase, the algorithm initialises a list (queue) 
of open nodes to contain structural motifs (see below). 
The motifs have been derived from the selected seed 
sequence. Only the motifs that have a minimum 
support, i.e. that also match other sequences from the 
input set, are part of the list. Structural motifs have no 
base pair instantiated. 

In the second phase, all the possible sequence 
instantiations for every motif of the open list are 
considered. Systematically and exhaustively, all the 
base pairs of every stem motif in the open list are 
replaced by the actual base pair that occurs in the seed 
sequence. This information is readily available since 
the location of every stem within the seed sequence 
has been saved. Each newly created instance is 
matched against the remaining sequences. Only the 
motifs that have a minimum level of support are added 
at the rear of the queue. Figure 1 illustrates this 
process for a single stem. In the actual 
implementation, the instantiations of all the motifs 
currently in the open list are interleaved. In other 
words, all the one base pair motifs for all the structural 
motifs are explored first, followed by the exploration 
of all the two base pair motifs, and so on. 
Progressively, all the possible instantiations are 
validated. This is done efficiently so that the same 
instantiation is never considered twice. At the end of 
the second phase, the open queue contains a mixture of 
structural, partially and fully instantiated motifs, all 
consisting of a single stem. 

Finally, the third phase consists of creating multi-
stems motifs by selecting and composing two motifs at 
a time from the open list. The composition of two 
motifs is dictated by their occurrence within the seed 
sequence. Given two motifs, there are two possible 
relationships. One motif follows the other or one motif 
is nested within the other. The seed sequence is used 
to determine which relationship to use and to calculate 
the distance parameters. Motifs that are structurally 
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2.7. Suffix array-based matcher invalid (because they overlap in the sequence space) or 
that don’t have the required minimum support are 
discarded. During the execution of the third phase, the 
open list contains a mixture of single and multi-stems 
motifs, that are structural, partially or fully 
instantiated. 

We introduce an algorithm for matching secondary 
structure expressions. The basic idea is to “thread” a 
secondary structure expression onto the suffix tree of 
the input sequence. This means simultaneously 
traversing the expression, from its 5’ end, and the 
suffix tree, starting from its root. 

 

The main steps of this algorithm are as follows. 
First, build a suffix tree for the input string. Then, 
match the characters of the secondary structure 
expression along the unique path in the suffix tree 
until either 1) the end of the secondary structure 
expression has been reached, 2) the end of a branch 
has been reached, 3) a mismatch has been found, or 4) 
the secondary structure expression contains a joker 
(don’t care symbol, any base type should be allowed). 

In the former case, every leaf of the subtree below 
the last match represents the starting location of an 
occurrence. For cases 2 and 3, this is a failure and the 
algorithm must restart from the last branch point (see 
below), if there are no more branch points, this means 
the expression does not occur in the input sequence.  

Finally, case 4, there are four issues to be 
considered: the joker occurs in a loop region, the joker 
occurs in the 5’ end region of a stem, it occurs in the 
3’ end region of a stem, or it occurs at an internal node 
(fork) of the suffix tree. 

For the first three issues, it is assumed that the last 
match was not the last letter of the label of an edge (it 
occurred at some intermediate position). The first issue 
is easy to deal with; the next character along this path 
is accepted. Second issue, a joker has been found in a 
5’ end region of a stem. The algorithm accepts the 
next symbol along the current path, and pushes that 
symbol onto a stack. Next and third issue, a joker is 
encountered in a 3’ end region of a stem, the top of the 
stack contains the base that occurred at the 5’ position 
of the pair, if the next character along the current path 
inside the tree is its complement then the top element 
is discarded and the algorithm continues, otherwise 
this is a failure and the algorithm restarts from an 
earlier branch point, or stop indicating a failure. 
Finally, whenever a joker is found, and the last match 
occurred at the end of a label, then a branch point must 
be created. Effectively, this means that the algorithm is 
applied recursively for all the edges out of the internal 
node where the last match has occurred. The system 
stack serves to memorise all the branch points. When 
the end of a secondary structure expression is reached 
(case 1) the stack must also be empty; otherwise, the 
expression is not valid. 

 
Fig. 1: Schematic illustration of the sequence 

instantiation process. Open circles correspond to 
generic base pairs, n:n’, while the filled circles 
represent specific base pair, a:u, u:a, c:g, g:c. 

2.5. Objective function 
Our research has focused on developing a framework 
allowing to exhaustively search a space of possible 
secondary structure motifs. The objective function that 
has been used consists of calculating the information 
content of the motif. See the Results section for further 
details. 

2.6. Matching algorithm 
For all three phases of the search algorithm, the newly 
created motifs must be matched against the k-1 
remaining sequences in order to determine the level of 
support. 

The algorithm can answer two specific questions: 
1) does this secondary structure expression occur in 
this input string? and 2) how many occurrences of this 
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expression are there? For the decision question, the 
algorithm stops whenever the end of the secondary 
structure expression is found. For the later question, 
all the leaves of the subtree below the node where the 
last character of the expression was matched must be 
visited in order to count the number of occurrences. 

Figure 2 illustrates the search. When a joker is 
found in a 5’ end region of a stem, the current path, in 
the suffix tree, is extended by one character, which is 
also pushed onto a stack. Later, when a joker is found 
in a 3’ end region of a stem, the character onto the top 
of the stack must be the complement of a valid 
extension of the current path. 

Determining the level of support is critical, as this 
allows pruning the search tree. The matching 
algorithm is called for each newly created node, 
therefore, most of the CPU time is spend matching 
sequences. 

 

 
Fig. 2: Secondary structure matching. 

3. Results and discussion 
We validated the approach using the secondary 
structure model proposed by Le Quesne et al. for the 
c-myc IRES[44]. The eight sequences that served to 
derive the model were used as input; the sequences are 
approximately 400 nucleotides long. We also applied 
mfold, a widely used computer program for secondary 
structure prediction. Within the top 1000 motifs 
having the highest information content, 279 motifs 
overlapped with Le Quesne et al.’s model. The 
positive predictive value for those motifs varied from 
23.5% to 100%, while the coverage varied from 7.8% 
to 21.1%. PPV is defined as the fraction of the 
predicted base pairs that are also occurring in the 
experimentally derived model. The coverage is the 

fraction of the base pairs from the model that are 
predicted. The low coverage is expected since Seed is 
aimed to produce small motifs. On the same dataset, 
the PPV score measured for mfold was 12.3%, while 
the coverage was 35%. 

Our objective of building a software system 
capable of enumerating exhaustively all possible 
secondary structure motifs, w.r.t. a user defined set of 
parameters, has been attained. Furthermore, the set of 
motifs produced by the software system contains 
biologically relevant candidates. 

Several improvements to the algorithms are 
considered. Such as replacing the suffix array-based 
matcher by an algorithm derived from Myers’ 
generalisation the Cocke-Younger-Kasami[45]. 
However, the most urgent issue is to study alternative 
objective functions. 

Information content alone cannot distinguish 
biologically relevant motifs from the rest. We are 
currently investigating alternative scoring functions. 
Recently, we extended the work of Mathews and 
Turner, and implemented a software system for the 
simultaneous alignment and structure prediction of 
three RNA sequences[46, 47]. We will compare a 
function based on a linear combination of the free 
energy of all the matches to a more complex 
information-based function that takes into account 
positive and negative examples, as well as the 
complexity of the motif. 

Primary sequence information contributes to 
defining the identity of RNA motifs. Indeed, in the 
case of the T box system, for example, the acceptor 
end of an uncharged tRNA forms base pairs with the 
antiterminator element[48]. Accordingly, the identity 
of the bases in the loop regions will also be 
considered. 

4. Conclusions 
Determining RNA secondary structure motifs is 
important for understanding the structure-function 
relationship and post-transcriptional regulation, as 
well as identifying RNA targets. We presented a 
combinatorial algorithm for the detection of RNA 
secondary structure motifs that are common to a set of 
unaligned sequences. To our knowledge, this is the 
first algorithm that directly attempts to exhaustively 
explore the space of sequence and structure motifs 
using suffix arrays. We also introduced a new suffix 
arrays-based algorithm for matching RNA secondary 
expressions. Our next research efforts will be focusing 
on improving the objective function, and therefore the 
ability of Seed to discriminate biologically interesting 
motifs from the rest. 
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