Université d’Ottawa University of Ottawa

, , . N . .
Faculté de génie H]]] Faculty of engineering
Ecole de science informatique School of Electrical Engineering
et de génie électrique u Ottawa and Computer Science

Introduction to Computing II (ITT 1121)
MIDTERM EXAMINATION

Instructors: Opeyemi Adesina, Sherif Aly, Guy-Vincent Jourdan and Marcel Turcotte

March 2017, duration: 2 hours

Identification
Last name: First name:
Student #: Seat#: _ Signature: Section: A or Bor Cor D
Instructions Marking scheme
1. This is a closed book examination. Question | Maximum Result
2. No calculators, electronic devices or other aids are permit-
ted 1 25
ed.
(a) Any electronic device or tool must be shut off, stored 2 15
and out of reach. 3 30
(b) Anyone who fails to comply with these regulations Total 70

may be charged with academic fraud.
3. Write your answers in the space provided.
(a) Use the back of pages if necessary.
(b) You may not hand in additional pages.

4. Do not remove pages or the staple holding the examination
pages together.

5. Write comments and assumptions to get partial marks.

Beware, poor hand-writing can affect grades.

7. Wait for the start of the examination.

*

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the instructors.



February 2017 ITI 1121 Page 2 of 12

Question 1 (25 marks)

This question is about Java basics. You are required to write 3 classes. First, you will write the class Point,
which simply represents a point on a two-dimensional plane. Objects of this class have two instance vari-
ables, x and y, which record the coordinate of the point. The constructor of the class receives these 2
elements of information as parameters.

In the space below, provide the code for the class Point, including one constructor, all the necessary
getter and setter methods, as well as an implementation of the instance method toString.




February 2017 ITI 1121 Page 3 of 12

You now create a class ColoredPoint, which is a specialized version of the class Point. In addition to
the coordinates, an instance of ColoredPoint has also an instance variable ¢, which is the colour of the point
(c is a reference to an instance of a class Color, defined elsewhere in the program). The constructor of the
class receives the 2 coordinates and the colour as parameters.

In the space below, provide the code for the class ColoredPoint, including the constructor, all the nec-
essary getters and setters, as well as an implementation of the method toString.




February 2017 ITI 1121 Page 4 of 12

Lastly, create a class BoundingBox. Its constructor receives, as a parameter, the reference of an array
containing a mix of Point and ColoredPoint instances, and it computes a bounding box made of the top left
and bottom right points of the smallest rectangle that contains all the points in the array.

If the constructor is passed the reference of an array that has a single element, then the bounding box is
that element. If there is no element, or if the reference is null, then the bounding box is the point (0,0).

In the space below, provide the code for the class BoundingBox, including the constructor (which must
compute the bounding box), as well as the getters for the top left and bottom right points, as well as an
implementation of the method toString.




February 2017 ITI 1121 Page 5 of 12

Question 2 (15 marks)

For this question, an index (a number) is associated with an element of information. You will provide two
solutions to this problem, without and with the use of generics.

In the space below, write the implementation of the class Indexed. An object of the class Indexed has
two instance variables, index of type int and value of type String. Give the implementation of a constructor
having two parameters, which are the initial values for the instance variables. Implement getter methods for
these two attributes, but no setters. Give the implementation of the instance method isEqual that receives the
reference of another Indexed object and returns true if and only if this and the other object have the same
content. This implementation should not make use of generics.

In the space below, declare a reference variable, create an object of the class Indexed to store the values 0
and “Ottawa”. Finally, store the reference of that object in the reference variable.




February 2017 ITI 1121 Page 6 of 12

In the space below, write the implementation of the class Indexed that takes a type parameter, T. The class
Indexed declares two instance variables, index of type int and value of type T. Give the implementation of
a constructor having two parameters, which are the initial values for the instance variables. Implement getter
methods for these two attributes, but no setters. Give the implementation of the instance method isEqual that
receives the reference of another Indexed object and returns true if and only if this and the other object have
the same content.

In the space below, declare a reference variable, create an object of the class Indexed to store the values 0
and “Ottawa”. Finally, store the reference of that object in the reference variable.




February 2017 ITI 1121 Page 7 of 12

Question 3 (30 marks)

This question takes advantage object oriented and interface concepts to generalize the tasks of assignment 2.
The UML diagram below presents the organization of the classes and the interface.

«Experiment» Experimenter Statistics
oneRun: int - exp: Experiment > - values :int[]
- stats: Statistics - count, min, max : int
: - int : numberOfRuns + updateStatistics(int value): void
mm—————--- Lo - | + runExperiments: void
| |
1 1
TwolnARow BirthDayParadox
- range: int - range: int
+ oneRun: int + oneRun: int

The Java source code below shows the intended use of these objects.

TwolnARow t;
Experimenter e;

new TwolnARow (10);
= new Experimenter(t, 100);

a =
|

e.runExperiments ();

The execution of the above program should produce the following output on the console.

We have run 100 experiments:
the minimum was 3
the maximum was 41
the mean was 10.62
the standard deviation was 7.86

A. Implement the interface Experiment. The interface declares a method oneRun with no parameter, the
return value of the method is of type int.




February 2017 ITI 1121 Page 8 of 12

B. Implement the class TwoInARow.

e The class TwoInARow implements the interface Experiment.
e Its constructor has a parameter specifying the range of values for this experiment.

e The method oneRun generates random numbers in a specified range of values. It stops once two
consecutive values are equal. Finally, it returns the number of attempts that were necessary for
finding two consecutive values that are equal. In the example below, the method oneRun needed
8 attempts to produce two consecutive numbers that were equal. The return value is 8.

4, 7, 2, 9, 7, 5, 1, 1

import java.util.Random;

Hint: an object of the class Random has a method nextInt that returns a random number between 0
(inclusive) and n (exclusive), where n is the parameter of the method.



February 2017 ITI 1121 Page 9 of 12

C. Implement the class Experimenter.

e The constructor of the class Experimenter has two parameters. The first parameter is the refer-
ence of an object whose class implements the interface Experiment. The second parameter is the
specified number of runs.

e The method runExperiments will run the experiment a specified number of times, collect the
results in an object of the class Statistics (see next page), and display statistics at the end of the
runs.

D. On the next page, modify the class Statistics to use the dynamic array technique presented in class.
In the implementation on the right write only the portions of the code that need to change. The other
portions are assumed to remain the same.



public class Statistics { public class Statistics { // Only the necessary changes

private int[] values;
private int count, min, max;

LT0T Areniqaq

public Statistics (int numberOfRuns) {
values = new int[numberOfRuns];
count = 0;

}

public void updateStatistics (int value) {
if (count == 0) {
min = max = value;
}

min = Math.min(min, value);
max = Math.max(max, value);
values[count] = value;
count = count + 1;

}

public int getMin() { return min; }

ICIT ILI

public int getMax () { return max; }

public double average () {
double result = 0.0;
for (int i = 0; i < count; i++) {
result = result + values[i];
}

return result / count;

}
public double standardDeviation () {
double mean = average ();
double squareSum = 0;
for (int i = 0; i < count; i++) {
squareSum += Math.pow(values[i] — mean, 2);

}

return Math. sqrt ((squareSum) / count);

Tl Jo 01 98ed




February 2017 ITI 1121 (blank space)




February 2017 ITI 1121 (blank space)




