
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI 1121)
FINAL EXAMINATION

Instructors: Opeyemi Adesina, Sherif Aly, Guy-Vincent Jourdan and Marcel Turcotte

April 2017, duration: 3 hours

Identification
Last name: First name:

Student #: Seat #: Signature: Section: A or B or C or D

Instructions
1. This is a closed book examination.
2. No calculators, electronic devices or other aids are permit-

ted.

(a) Any electronic device or tool must be shut off, stored
and out of reach.

(b) Anyone who fails to comply with these regulations
may be charged with academic fraud.

3. Write your answers in the space provided.

(a) Use the back of pages if necessary.

(b) You may not hand in additional pages.

4. Do not remove pages or the staple holding the examination
pages together.

5. Write comments and assumptions to get partial marks.
6. Beware, poor hand-writing can affect grades.
7. Wait for the start of the examination.

Marking scheme

Question Maximum Result

1 15
2 45
3 20
4 10

Total 90

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the authors.

April 2017 ITI 1121 Page 2 of 20

Question 1 (15 marks)
A. Consider the class declaration below:

p u b l i c c l a s s A ex tends B implements C {
. . .

}

Which ones of the following statements are valid, and which ones are invalid?

(a)

A v a r = new B () ;

Valid or Invalid
(b)

A v a r = new C () ;

Valid or Invalid
(c)

B v a r = new A () ;

Valid or Invalid
(d)

B v a r = new C () ;

Valid or Invalid
(e)

C v a r = new A () ;

Valid or Invalid
(f)

C v a r = new B () ;

Valid or Invalid

B. An exception is checked if it is caught by a try/catch block.
True or False

C. Once an exception is caught, the application resumes from the point where the exception was thrown.
True or False

D. Adding elements to a BinarySearchTree in increasing order will produce a balanced tree.
True or False.

E. The depth of a balanced binary tree of size n is blog2 nc.
True or False

April 2017 ITI 1121 Page 3 of 20

F. The postorder traversal of the tree below is 1, 4, 7, 6, 3, 13, 14, 10 and 8.
True or False

3

8

10

141 6

4 7 13

G. A deque (double-ended queue) is an abstract data type similar to a queue, but where elements can
be added and removed both from the front and the rear of the queue. Much like queues and stacks,
deques can be implemented using arrays, circular arrays, singly or doubly linked lists, etc. Consider
the following implementations:

• ArrayDeque: a simple array implementation, which has an instance reference variable to the
array, as well as an instance variable containing the number of elements in the array.

• CircularArrayDeque: a circular array implementation, which has an instance reference variable
to the array, as well as instance variables for the current front and rear elements in the array.

• LinkedDeque: a (singly) linked list implementation, which has an instance reference variable to
the current head Node of the deque.

• DoublyLinkedDeque: a doubly linked list implementation, which has an instance reference vari-
able to the current head Node of the deque and an instance reference variable to the current tail
Node of the deque, and doubly linked Nodes.

For each of the four methods below, indicate for each implementation if the method can be Fast (that
is, its execution time is constant) or if it will be Slow (that is, proportional to the number of elements
in the list).

Note that both array implementations are based on dynamic arrays, and thus can accommodate any
number of elements. However, the array is not automatically shrunk.

ArrayDeque CircularArrayDeque LinkedDeque DoublyLinkedDeque
void addFront(E elem)
void addRear(E elem)

E removeFront()
E removeRear()

April 2017 ITI 1121 Page 4 of 20

Question 2 (45 marks)
Recall that the interfaces Stack and Queue are respectively defined as follows:

p u b l i c i n t e r f a c e Stack<E> {
boolean i sEmpty () ;
void push (E elem) ;
E pop () ;
E peek () ;

}

p u b l i c i n t e r f a c e Queue<E> {
boolean i sEmpty () ;
void enqueue (E elem) ;
E dequeue () ;

}

Assume that you have been provided a working implementation of the interface Stack called StackIm-
plementation, and a working implementation of the interface Queue called QueueImplementation. In the
following, you can use instances of both classes as you need, but no other storage mechanisms.

Our goal is to create a class StacksAndQueues, which will implement several class methods to do some
basic manipulations of stacks and queues. To simplify the problem, we are going to assume that Stack-
sAndQueues handles exclusively Stacks and Queues of Strings.

• In the following, you are asked to provide the code for the methods.

• For all of your methods, make sure to handle all exceptional situations appropriately.

The following example illustrates the use of the class StacksAndQueues:

Queue<S t r i n g > queue ;
queue = new QueueImplementa t ion<S t r i n g > () ;

queue . enqueue ("a") ;
queue . enqueue ("b") ;
queue . enqueue ("c") ;
queue . enqueue ("d") ;
queue . enqueue ("e") ;

System . o u t . p r i n t l n (queue) ;

StacksAndQueues . r e v e r s e Q u e u e (queue) ;

System . o u t . p r i n t l n (queue) ;

Executing the above Java program produces the following output.

(front) -> [a, b, c, d, e] <- (rear)
(front) -> [e, d, c, b, a] <- (rear)

April 2017 ITI 1121 Page 5 of 20

Question 2.1 ReverseQueue
The method reverseQueue is a class method of StacksAndQueues that takes a Queue of String instances
as input parameter. After calling that method, the elements in the queue should be reversed.

For example, if the following queue is passed to reverseQueue:

(front) -> [a, b, c, d, e] <- (rear)

after the call, the queue should contain

(front) -> [e, d, c, b, a] <- (rear)

Provide your implementation of reverseQueue in the box below.

p u b l i c c l a s s StacksAndQueues {

/ / i m p l e m e n t a t i o n o f method r e v e r s e Q u e u e

r e v e r s e Q u e u e (Queue<S t r i n g > queue){

i f (queue){

}

tmp =

whi le (){

tmp .

}

whi le (){

queue .

}

}

April 2017 ITI 1121 Page 6 of 20

Question 2.2 ReverseStack
The method reverseStack is a class method of StacksAndQueues that takes a Stack of String instances as
input parameter. After calling that method, the elements in the stack should be reversed.

For example, if the following stack is passed to reverseStack:

(top) -> [a, b, c, d, e] <- (bottom)

after the call, the stack should contain

(top) -> [e, d, c, b, a] <- (bottom)

Provide your implementation of reverseStack in the box below

/ / i m p l e m e n t a t i o n o f method r e v e r s e S t a c k

r e v e r s e S t a c k (Stack<S t r i n g > s t a c k){

i f (s t a c k){

}

tmp =

whi le (){

tmp .

}

whi le (){

s t a c k .

}

}

April 2017 ITI 1121 Page 7 of 20

Question 2.3 RemoveAll (first method)
The first method removeAll is a class method of StacksAndQueues that takes two input parameters: a
Queue of String instances and a String instance. After calling that method, every occurrence of that string
has been removed from the queue. If that string was not in the queue, then the queue is left unchanged.

For example, if the following queue is passed to removeAll

(front) -> [a, b, c, a, b, c, a, b, c] <- (rear)

and the second parameter is the string “a”, after the call, the queue should contain

(front) -> [b, c, b, c, b, c] <- (rear)

Provide your implementation of removeAll in the box below

/ / i m p l e m e n t a t i o n o f method r e m o v e A l l (Queue<S t r i n g > queue , S t r i n g toRemove)

removeAl l (Queue<S t r i n g > queue , S t r i n g toRemove){

i f (){

}

tmp =

whi le (){

i f (){

}

}

whi le (){

}

}

April 2017 ITI 1121 Page 8 of 20

Question 2.4 RemoveAll (second method)
The second method removeAll is a class method of StacksAndQueues that takes two input parameters: a
Stack of String instances and a String instance. After calling that method, every occurrence of that string
has been removed from the stack. If that string was not in the stack, then the stack is left unchanged.

For example, if the following stack is passed to removeAll

(top) -> [a, b, c, a, b, c, a, b, c] <- (bottom)

and the second parameter is the string “a”, after the call, the stack should contain

(top) -> [b, c, b, c, b, c] <- (bottom)

Provide your implementation of removeAll in the box below

/ / i m p l e m e n t a t i o n o f method r e m o v e A l l (S tack<S t r i n g > s t a c k , S t r i n g toRemove)

removeAl l (S tack<S t r i n g > s t a c k , S t r i n g toRemove){

i f (){

}

tmp =

whi le (){

i f (){

}

}

whi le (){

}

}

April 2017 ITI 1121 Page 9 of 20

Question 2.5 RemoveFirst (first method)
The first method removeFirst is a class method of StacksAndQueues that takes two input parameters: a
Queue of String instances and a String instance. After calling that method, the first occurrence of that
string has been removed from the queue. If that string was not in the queue, then the queue is left unchanged.

For example, if the following queue is passed to removeFirst

(front) -> [a, b, c, a, b, c, a, b, c] <- (rear)

and the second parameter is the string “a”, after the call, the queue should contain

(front) -> [b, c, a, b, c, a, b, c] <- (rear)

If the second parameter had been the string “b”, after the call, the queue should have contained

(front) -> [a, c, a, b, c, a, b, c] <- (rear)

Provide your implementation of removeFirst in the box below

/ / i m p l e m e n t a t i o n o f method r e m o v e F i r s t (Queue<S t r i n g > queue , S t r i n g toRemove)

r e m o v e F i r s t (Queue<S t r i n g > queue , S t r i n g toRemove){

i f (){

}

tmp =

whi le (){

i f (){

} e l s e {

}

}

whi le (){

}

}

April 2017 ITI 1121 Page 10 of 20

Question 2.6 RemoveFirst (second method)
The second method removeFirst is a class method of StacksAndQueues that takes two input parameters:
a Stack of String instances and a String instance. After calling that method, the first occurrence of that
string has been removed from the stack. If that string was not in the stack, then the stack is left unchanged.

For example, if the following stack is passed to removeFirst

(top) -> [a, b, c, a, b, c, a, b, c] <- (bottom)

and the second parameter is the string “a”, after the call, the stack should contain

(top) -> [b, c, a, b, c, a, b, c] <- (bottom)

If the second parameter had been the string “b”, after the call, the stack should have contained

(top) -> [a, c, a, b, c, a, b, c]<- (bottom)

Provide your implementation of removeFirst in the box below

/ / i m p l e m e n t a t i o n o f method r e m o v e F i r s t (S tack<S t r i n g > s t a c k , S t r i n g toRemove)

r e m o v e F i r s t (S tack<S t r i n g > s t a c k , S t r i n g toRemove){

i f (){

}

tmp =

whi le (){

i f (){

} e l s e {

}

}

whi le (){

}

}

April 2017 ITI 1121 Page 11 of 20

Question 2.7 RemoveLast (first method)
The first method removeLast is a class method of StacksAndQueues that takes two input parameters: a
Queue of String instances and a String instance. After calling that method, the last occurrence of that
string has been removed from the queue. If that string was not in the queue, then the queue is left unchanged.

For example, if the following queue is passed to removeLast

(front) -> [a, b, c, a, b, c, a, b, c] <- (rear)

and the second parameter is the string “a”, after the call, the queue should contain

(front) -> [a, b, c, a, b, c, b, c] <- (rear)

Provide your implementation of removeLast in the box below

/ / i m p l e m e n t a t i o n o f method removeLas t (Queue<S t r i n g > queue , S t r i n g toRemove)

removeLas t (Queue<S t r i n g > queue , S t r i n g toRemove){

}

April 2017 ITI 1121 Page 12 of 20

Question 2.8 RemoveLast (second method)
The second method removeLast is a class method of StacksAndQueues that takes two input parameters: a
Stack of String instances and a String instance. After calling that method, the last occurrence of that string
has been removed from the stack. If that string was not in the stack, then the stack is left unchanged.

For example, if the following stack is passed to removeFirst

(top) -> [a, b, c, a, b, c, a, b, c] <- (bottom)

and the second parameter is the string “a”, after the call, the stack should contain

(top) -> [a, b, c, a, b, c, b, c]<- (bottom)

Provide your implementation of removeLast in the box below

/ / i m p l e m e n t a t i o n o f method removeLas t (S tack<S t r i n g > s t a c k , S t r i n g toRemove)

removeLas t (S tack<S t r i n g > s t a c k , S t r i n g toRemove){

}

April 2017 ITI 1121 Page 13 of 20

Question 3 (20 marks)
You have been provided with a working implementation of a doubly linked list. It has an instance reference
variable to the current head Node of the list and an instance reference variable to the current tail Node of the
list, and uses doubly linked Nodes. The relevant part of that implementation is shown below:

p u b l i c c l a s s Doub lyL inkedLi s t<T> implements L i s t <T> {

p r i v a t e s t a t i c c l a s s Node<T> {

p r i v a t e T v a l u e ;
p r i v a t e Node<T> p r e v i o u s ;
p r i v a t e Node<T> n e x t ;

Node (T va lue , Node<T> p r e v i o u s , Node<T> n e x t) {
t h i s . v a l u e = v a l u e ;
t h i s . p r e v i o u s = p r e v i o u s ;
t h i s . n e x t = n e x t ;

}
}

p r i v a t e Node<T> head ;
p r i v a t e Node<T> t a i l ;

p u b l i c boolean i sEmpty () {
re turn head == n u l l ;

}
. . .

}

We want to add a two-way, looping iterator to that implementation. By ”two-way”, we mean that the
iterator can go either forward or backward , thanks to two methods, next (which moves the iterator forward
and returns the next value) and prev (which moves the iterator backwards and returns the previous value). By
“looping”, we mean that when the iterator reaches one end of the list, it continues from the other end of the
list.

The interface Iterator is defined as follows:

p u b l i c i n t e r f a c e I t e r a t o r <E> {
E n e x t () ;
boolean hasNext () ;
E p rev () ;
boolean h a s P r e v () ;

}

The method hasNext (respectively hasPrev) returns true if and only if the next call to next (respectively
to prev) will return an element (of type E).

April 2017 ITI 1121 Page 14 of 20

Assume that “list” is a reference variable of type “List” of “Strings”, which contains the values “[A, B,
C]”.

head

list

B CA

tail

The following code illustrates the use of our iterator: it declares a reference variable “iterator” of type Iterator
on “list”, it then calls the method iterator() on the list, and assigns the returned reference to the variable
“iterator”. The iterator is then moved forward 5 times (it loops back to the front on the fourth move) and
backward 3 times (it loops back to the rear on the second move backward):

/ / ‘ ‘ l i s t ’ ’ i s a r e f e r e n c e v a r i a b l e o f t y p e ‘ ‘ L i s t <S t r i n g > ’ ’ ,
/ / t h a t c o n t a i n s t h e v a l u e s ‘ ‘ [A , B , C] ’ ’ .

I t e r a t o r <S t r i n g > i t e r a t o r ;
i t e r a t o r = l i s t . i t e r a t o r () ;

System . o u t . p r i n t l n (i t e r a t o r . n e x t ()) ; / / p r i n t s A
System . o u t . p r i n t l n (i t e r a t o r . n e x t ()) ; / / p r i n t s B
System . o u t . p r i n t l n (i t e r a t o r . n e x t ()) ; / / p r i n t s C
System . o u t . p r i n t l n (i t e r a t o r . n e x t ()) ; / / l o o p s back t o t h e f r o n t and p r i n t s A
System . o u t . p r i n t l n (i t e r a t o r . n e x t ()) ; / / p r i n t s B
System . o u t . p r i n t l n (i t e r a t o r . p r ev ()) ; / / p r i n t s A
System . o u t . p r i n t l n (i t e r a t o r . p r ev ()) ; / / l o o p s back t o t h e r e a r and p r i n t s C
System . o u t . p r i n t l n (i t e r a t o r . p r ev ()) ; / / p r i n t s B

Our goal is to provide the implementation for the method iterator(), as well as all the necessary code
required for it to work1.

Provide all the code in the box that follows.
1Our implementation should be correct. In particular, it should be such that several iterators can be used concurrently.

April 2017 ITI 1121 Page 15 of 20

/ / t h i s code i s added t o t h e c l a s s D o u b l y L i n k e d L i s t<T>

p u b l i c I t e r a t o r <T> i t e r a t o r () {
/ / your code f o r method I t e r a t o r <T> goes here

}

/ / t h e r e s t o f your code goes here

April 2017 ITI 1121 Page 16 of 20

April 2017 ITI 1121 Page 17 of 20

Question 4 (10 marks)
Consider the class SinglyLinkedList outlined below

p u b l i c c l a s s S i n g l y L i n k e d L i s t implements L i s t <Boolean> {

p r i v a t e s t a t i c c l a s s Node {
p r i v a t e Boolean v a l u e ;
p r i v a t e Node n e x t ;
p r i v a t e Node (Boolean va lue , Node n e x t) {

t h i s . v a l u e = v a l u e ;
t h i s . n e x t = n e x t ;

}
}

p r i v a t e Node head ;

p u b l i c boolean i sEmpty () {
re turn head == n u l l ;

}

/ / c l a s s c o n t i n u e s a f t e r t h a t

We want to add the method and() to the class SinglyLinkedList. The method and() is a recursive method
that returns true if and only if all the elements of the list instance are true. The behaviour of the method is
undefined if the list is empty.

For example, the code below prints true then false
S i n g l y L i n k e d L i s t t e s t = new S i n g l y L i n k e d L i s t () ;

t e s t . add (t rue) ;
t e s t . add (t rue) ;
t e s t . add (t rue) ;
System . o u t . p r i n t l n (t e s t . and ()) ; / / p r i n t s ” t r u e ”
t e s t . add (f a l s e) ;
t e s t . add (t rue) ;
System . o u t . p r i n t l n (t e s t . and ()) ; / / p r i n t s ” f a l s e ”

Provide the recursive implementation of the method in the following box.
Warning: make sure that your implementation is as efficient as possible. Two marks will be removed for

an inefficient implementation!

April 2017 ITI 1121 Page 18 of 20

April 2017 ITI 1121 Page 19 of 20

(blank space)

April 2017 ITI 1121 Page 20 of 20

(blank space)

