
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI1121)
FINAL EXAMINATION

Instructors: Nour El-Kadri, Guy-Vincent Jourdan, and Marcel Turcotte

April 2016, duration: 3 hours

Identification
Last name: First name:

Student #: Seat #: Signature: Section: A or B or C

Instructions
1. This is a closed book examination.
2. No calculators, electronic devices or other aids are permit-

ted.

(a) Any electronic device or tool must be shut off, stored
and out of reach.

(b) Anyone who fails to comply with these regulations
may be charged with academic fraud.

3. Write your answers in the space provided.

(a) Use the back of pages if necessary.

(b) You may not hand in additional pages.

4. Do not remove pages or the staple holding the examination
pages together.

5. Write comments and assumptions to get partial marks.
6. Beware, poor hand-writing can affect grades.
7. Wait for the start of the examination.

Marking scheme

Question Maximum Result

1 15
2 15
3 25
4 15
5 10

Total 80

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the instructors.

April 2016 ITI1121 Page 2 of 16

Question 1 Multiple-choice questions (15 marks)
A. Practices such as the one depicted by the following program should be avoided. Assume that s desig-

nates a valid instance of some stack implementation and that value is of the correct type.
True or False
boolean done = f a l s e ;

whi le (! done) {
t r y {

v a l u e = s . pop () ;
} ca tch (EmptyS tackExcep t ion e) {

done = t rue ;
}

}

B. A method that throws unchecked exceptions must declare them using the keyword throws, otherwise
a compile-time error will be produced.
True or False

C. Good object oriented programming practices suggest that a programmer must always catch all the
exceptions generated by the methods being called.
True or False

D. Consider two empty BinarySearchTree objects and the method add presented in class. Adding the
same elements, but in different order into the two trees, will always lead to trees of the same height.
True or False.

E. Consider the binary search tree below.

For each series of nodes, circle the corresponding traversing strategy (pre-order, in-order, post-order,
other):

Order of traversal: 6-2-1-4-3-5-7-9-8 Pre-order In-order Post-order Other
Order of traversal: 1-3-5-4-2-8-9-7-6 Pre-order In-order Post-order Other
Order of traversal: 1-2-3-4-5-6-7-8-9 Pre-order In-order Post-order Other

April 2016 ITI1121 Page 3 of 16

F. Consider 4 implementations of a list:

• ArrayList: a simple array implementation, which has an instance reference variable to the array,
as well as an instance variable containing the number of elements in the array.

• CircularArrayList: a circular array implementation, which has an instance reference variable to
the array, as well as instance variables for the current front and rear elements in the array.

• LinkedList: a (singly) linked list implementation, which has an instance reference variable to the
current head Node of the list.

• DoublyLinkedList: a doubly linked list implementation, which has an instance reference variable
to the current head Node of the list and an instance reference variable to the current tail Node of
the list, and doubly linked Nodes.

For each of the six methods below, indicate for each implementation if the method can be Fast (that is,
its execution time is constant) or if it will be Slow (that is, proportional to the number of elements in
the list).

Note that both array implementations are based on dynamic arrays, and thus can accommodate any
number of elements. However, the array is not automatically shrunk.

ArrayList CircularArrayList LinkedList DoublyLinkedList
void addFirst(E elem)
void addLast(E elem)

void add(E elem, int pos)
E get(int pos)

void removeFirst()
void removeLast()

April 2016 ITI1121 Page 4 of 16

Question 2 (15 marks)
As we have done for Question 1 of Assignment 4, reverse engineer the memory diagram below: you need to
provide the implementation of all the classes, instance variables, constructors and the main method that will
lead to that memory state.
Hint: You need a class Book and a class Author, as well as a main method.

April 2016 ITI1121 Page 5 of 16

April 2016 ITI1121 Page 6 of 16

Question 3 (25 marks)
We have seen in class two main ways of implementing a list: using an array or using linked elements. We
have also seen that both approaches each have strengths and weaknesses. In some cases, it could be useful to
be able to switch between the two approaches, based on what the application is currently doing.

Our goal is to provide a hybrid implementation. That implementation provides both an array implemen-
tation and a linked-list implementation, albeit not at the same time. The linked-list implementation uses a
singly-list approach (with no dummy node). The array implementation uses a simple array (no circular array).

In order to support both implementations, our HybridList class will have the following instance variables:

• headNode is a reference pointing at the first Node of a non-empty list.

• headArray is a reference variable pointing to the array.

• currentSize is a primitive variable which holds the current number of elements in the list.

• currentCapacity is a primitive variable which holds the current capacity for the array.

• Finally, isArray is primitive variable used to record whether the object is currently using an array or a
linked-list to store the list’s elements.

The code below shows the beginning of the implementation.

p u b l i c c l a s s H y b r i d L i s t<E> implements L i s t <E> {

p r i v a t e s t a t i c c l a s s Node<T> {

p r i v a t e T v a l u e ;
p r i v a t e Node<T> n e x t ;

p r i v a t e Node (T va lue , Node<T> n e x t) {
t h i s . v a l u e = v a l u e ;
t h i s . n e x t = n e x t ;

}
}

p r i v a t e Node<E> headNode ;
p r i v a t e E [] headArray ;
p r i v a t e i n t c u r r e n t S i z e = 0 ;
p r i v a t e i n t c u r r e n t C a p a c i t y = 5 0 ;

p r i v a t e boolean i s A r r a y = f a l s e ;

p u b l i c boolean i sEmpty () {
re turn c u r r e n t S i z e == 0 ;

}

/ / . . .

April 2016 ITI1121 Page 7 of 16

You need to provide the implementation of 2 methods: the method public void toArray(), which changes
the storage of the current list elements from linked list to array, the method public void toLinkedList(), which
changes the storage of the current list elements from array to linked list.

• In both cases, if the implementation is already of the right kind (already using an array when toArray()
is called, or already using a linked list when toLinkedList() is called), the method does nothing.

• In these methods, you do not worry about memory management. In particular, you do not need to
“scrub” the memory of the “old” storage mechanism when switching to the new one.

• For your implementation of the methods, you cannot use the methods of the class HybridList, accord-
ingly these methods are not shown on the listing1. Your code needs to manipulate the instance variables
directly, headNode, headArray, currentSize, currentCapacity and isArray.

• You can assume that currentSize is always correct. However, you cannot assume that the value stored
in currentCapacity is up-to-date when the method toArray() is called, so you have to take care of
this.

• Note that neither toArray() to toLinkedList() return any value. They simply change the internal
representation of the list.

The following sample code shows a program using that class. In this sample program, the hybrid list is
first used as a LinkedList. In that form, a series of elements are added. It is then switched to an ArrayList,
and the elements are accessed through the method get().
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

H y b r i d L i s t<I n t e g e r > h L i s t = new H y b r i d L i s t<I n t e g e r > () ;

h L i s t . t o L i n k e d L i s t () ; / / h L i s t i s now a L i n k e d L i s t

f o r (i n t i =0 ; i <100; i ++) {
h L i s t . a d d F i r s t (i) ;

}

h L i s t . t o A r r a y () ; / / h L i s t i s now an Array

f o r (i n t i = 0 ; i < h L i s t . s i z e () ; i ++) {
System . o u t . p r i n t l n (h L i s t . g e t (i)) ;

}

}

In the next 2 pages, provide your code for both methods.

1The method isEmpty() is shown, so you can use this one.

April 2016 ITI1121 Page 8 of 16

/ / c o n t i n u i n g c l a s s H y b r i d L i s t <E> i m p l e m e n t s L i s t <E>

p u b l i c vo id t o A r r a y () {

} / / End o f t o A r r a y

April 2016 ITI1121 Page 9 of 16

/ / c o n t i n u i n g c l a s s H y b r i d L i s t <E> i m p l e m e n t s L i s t <E>

p u b l i c vo id t o L i n k e d L i s t () {

} / / End o f t o L i n k e d L i s t

April 2016 ITI1121 Page 10 of 16

Question 4 (15 marks)
Write the static method roll(Stack<E> s, int n) that transforms the stack designated by s such that the n
bottom elements are now on the top of the stack. The relative order of the top and bottom elements must
remain unchanged.

Stack<S t r i n g > s ;
s = new LinkedStack<S t r i n g > () ;

s . push ("a") ;
s . push ("b") ;
s . push ("c") ;
s . push ("d") ;
s . push ("e") ;

System . o u t . p r i n t l n (s) ;

r o l l (s , 2) ;

System . o u t . p r i n t l n (s) ;

Executing the above Java test program displays the following:

[a, b, c, d, e]
[c, d, e, a, b]

• Make sure to handle all exceptional situations appropriately.

• Since you do not know the size of the stack, you cannot use arrays for temporary storage. Instead,
you must use stacks. You can assume the existence of the class LinkedStack, which implements the
interface Stack.

• Stack is an interface.

p u b l i c i n t e r f a c e Stack<E> {
boolean i sEmpty () ;
E peek () ;
E pop () ;
void push (E elem) ;

}

April 2016 ITI1121 Page 11 of 16

p u b l i c c l a s s R o l l {
p u b l i c s t a t i c <E> void r o l l (S tack<E> s , i n t n) {

} / / End o f r o l l
} / / End o f R o l l

April 2016 ITI1121 Page 12 of 16

Question 5 (10 marks)
Consider the class SinglyLinkedList outlined below:

p u b l i c c l a s s S i n g l y L i n k e d L i s t <E> implements L i s t <E> {

p r i v a t e s t a t i c c l a s s Node<E> {
p r i v a t e E v a l u e ;
p r i v a t e Node<E> n e x t ;
p r i v a t e Node (E va lue , Node<E> n e x t){

t h i s . v a l u e = v a l u e ;
t h i s . n e x t = n e x t ;

}

}

p r i v a t e Node<E> head ;

/ / c l a s s c o n t i n u e s a f t e r t h a t

Consider the following code for the method mystery1 in the class SinglyLinkedList
p u b l i c boolean mys te ry1 (E o) {

i f (o == n u l l) {
throw new N u l l P o i n t e r E x c e p t i o n ("Null parameter") ;

}

i f (head == n u l l) {
re turn f a l s e ;

}

boolean r e s u l t = mys te ry1 (head , o) ;

i f (head . v a l u e . e q u a l s (o)) {
head = head . n e x t ;
re turn true ;

} e l s e {
re turn r e s u l t ;

}
}

p r i v a t e boolean mys te ry1 (Node<E> p , E o) {
i f (p . n e x t == n u l l) {

re turn f a l s e ;
}

boolean r e s u l t = mys te ry1 (p . nex t , o) ;

i f (p . n e x t . v a l u e . e q u a l s (o)) {
p . n e x t = p . n e x t . n e x t ;
re turn true ;

} e l s e {
re turn r e s u l t ;

}
}

April 2016 ITI1121 Page 13 of 16

A. Let list be an instance of the class SinglyLinkedList containing the following list: [A,B,C,A,B,C,A,B,C].
What will the following code print out? (Note: the method toString() of the class SinglyLinkedList ,
not shown here, simply prints the values of the elements in the list).

S i n g l y L i n k e d L i s t <S t r i n g > l i s t = new S i n g l y L i n k e d L i s t <S t r i n g > () ;

l i s t . add ("A") ; l i s t . add ("B") ; l i s t . add ("C") ;
l i s t . add ("A") ; l i s t . add ("B") ; l i s t . add ("C") ;
l i s t . add ("A") ; l i s t . add ("B") ; l i s t . add ("C") ;

System . o u t . p r i n t l n (l i s t) ;

System . o u t . p r i n t l n (l i s t . mys te ry1 ("A")) ;

System . o u t . p r i n t l n (l i s t) ;

System . o u t . p r i n t l n (l i s t . mys te ry1 ("C")) ;

System . o u t . p r i n t l n (l i s t) ;

System . o u t . p r i n t l n (l i s t . mys te ry1 ("A")) ;

System . o u t . p r i n t l n (l i s t) ;

Write your answer below. The answer to the first call to System.out.println(list); is already provided.

[A, B , C , A, B , C , A, B , C]

April 2016 ITI1121 Page 14 of 16

Now consider the following code for the method mystery2 in the class SinglyLinkedList. Make sure
to spot the subtle differences between the methods mystery1 and mystery2.

p u b l i c boolean mys te ry2 (E o) {

i f (o == n u l l) {
throw new N u l l P o i n t e r E x c e p t i o n ("Null parameter") ;

}

i f (head == n u l l) {
re turn f a l s e ;

}

boolean r e s u l t = mys te ry2 (head , o) ;

i f (head . v a l u e . e q u a l s (o)) {
i f (r e s u l t) {

head = head . n e x t ;
}
re turn true ;

} e l s e {
re turn r e s u l t ;

}
}

p r i v a t e boolean mys te ry2 (Node<E> p , E o) {
i f (p . n e x t == n u l l) {

re turn f a l s e ;
}

boolean r e s u l t = mys te ry2 (p . nex t , o) ;

i f (p . n e x t . v a l u e . e q u a l s (o)) {
i f (r e s u l t) {

p . n e x t = p . n e x t . n e x t ;
}
re turn true ;

} e l s e {
re turn r e s u l t ;

}
}

April 2016 ITI1121 Page 15 of 16

B. Let list be an instance of SinglyLinkedList containing the following list: [A,B,C,A,B,C,A,B,C]. What
will the following code print out?

S i n g l y L i n k e d L i s t <S t r i n g > l i s t = new S i n g l y L i n k e d L i s t <S t r i n g > () ;

l i s t . add ("A") ; l i s t . add ("B") ; l i s t . add ("C") ;
l i s t . add ("A") ; l i s t . add ("B") ; l i s t . add ("C") ;
l i s t . add ("A") ; l i s t . add ("B") ; l i s t . add ("C") ;

System . o u t . p r i n t l n (l i s t) ;

System . o u t . p r i n t l n (l i s t . mys te ry2 ("A")) ;

System . o u t . p r i n t l n (l i s t) ;

System . o u t . p r i n t l n (l i s t . mys te ry2 ("C")) ;

System . o u t . p r i n t l n (l i s t) ;

System . o u t . p r i n t l n (l i s t . mys te ry2 ("A")) ;

System . o u t . p r i n t l n (l i s t) ;

Write your answer below. The answer to the first call to System.out.println(list); is already provided.

[A, B , C , A, B , C , A, B , C]

April 2016 ITI1121 Page 16 of 16

(blank space)

