Université d’Ottawa University of Ottawa

, , . N . .
Faculté de génie H]]] Faculty of engineering
Ecole de science informatique School of Electrical Engineering
et de génie électrique u Ottawa and Computer Science

Introduction to Computing II (ITT 1121)
FINAL EXAMINATION

Instructors: Sherif G. Aly, Nathalie Japkowicz, and Marcel Turcotte

April 2015, duration: 3 hours

Identification
Last name: First name:
Student #: Seat#: _ Signature: Section: A or B or C
Instructions Marking scheme
1. This is a closed book examination. Question | Maximum Result
2. No calculators, electronic devices or other aids are permit-
¢ 1 10
ed.
(a) Any electronic device or tool must be shut off, stored 2 20
and out of reach. 3 15
(b) Anyone who fails to comply with these regulations 4 10
may be charged with academic fraud. 5 10
3. Write your answers in the space provided. Total 65

(a) Use the back of pages if necessary.
(b) You may not hand in additional pages.

4. Do not remove pages or the staple holding the examination
pages together.

5. Write comments and assumptions to get partial marks.

Beware, poor hand writing can affect grades.

7. Wait for the start of the examination.

*

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the instructors.

April 2015 ITI 1121

Page 2 of 20

Question 1 (10 marks)

A. True or False. The following Java code will not compile.

public class Person {
private String name;
private int age;

public class Child extends Person {
private int grade;
public Child(String name, int age, int grade) {
this .name = name;
this.age = age;
this.grade = grade;

B. True or False. The following Java code will not compile.

public class Cell<E> {
private E value;

public Cell(E value) {
if (value == null) {
throw new NullPointerException("illegal value");
}

this . value = value;

}

public boolean isEqual(Cell<E> other) {
if (other == null) {
return false;
1 else {
return value.equals(other.value);
}

April 2015 ITI 1121 Page 3 of 20

C. Consider the following array-based implementation of a stack:

public class ArrayStack<E> implements Stack<E> {

private E[] elems;
private int top;

public ArrayStack(int capacity) {
elems = (E[]) new Object[capacity];
top = 0;

}

public E pop() {
if (top == 0) {
throw new java.util.NoSuchElementException ();

}

E saved;

top = top — 1;
saved = elems[top];
elems[top] = null;

return saved;

}

True or False. The underlined code is needed to guard against memory leaks.

D. Values are added to a binary search tree in the following order: 25, 3, 37, 1, 19, 48.

True or False. The pre-order traversal of that tree will print: 1, 3, 19, 25, 37, 48, while its post-order
traversal will print: 48, 37, 25, 19, 3, 1.

April 2015 ITI 1121

Page 4 of 20

E. Consider the following program:

public class Test {
public static void main(String[] args) {

Queue<Integer > q;
q = new LinkedQueue ();

Stack<Integer> s;
s = new LinkedStack ();

q.enqueue (1);
s.push(1);

int x = 0;

for (int i = 1; i < 5; i++) {
x = q.dequeue() + s.pop();
s.push(x);
while (x > 0) {
q.enqueue(Xx);
X =X — 1;

}

int count;

count = 0;

while (!q.isEmpty ()) {
q.dequeue ();
count++;

}

System.out. println ("Size of the queue is " + count);

count = 0;

while (!s.isEmpty ()) {
s.pop ()
count++;

}

System.out.println("Size of the stack is " + count);

What does the above program print?

(a) Size of the queue is 4; Size of the stack is 1.
(b) Size of the queue is 7; Size of the stack is 5.
(c) Size of the queue is 17; Size of the stack is 1.
(d) Size of the queue is 21; Size of the stack is 5.
(e) Size of the queue is 28; Size of the stack is 1.

April 2015 ITI 1121

Page 5 of 20

F. Given the following class definition:

public class SinglyLinkedList<E> {
private static class Node<T> {

private final T value;
private Node<T> next;

private Node(T value, Node<T> next) {
this . value = value;
this .next = next;
}
}
private Node<E> head;

public void addFirst(E elem) {
head = new Node<E>(elem, head);
}

public void modify () {

Node<E> p, q;

p = head;

q = p.next.next;

q.next = p.next;

for (int i = 0; i < 6; i++) {
System.out. print(p.value);
P = p.next;

}

System.out. println ();

}

public static void main(String [] args) {
SinglyLinkedList<String> 1;
I = new SinglyLinkedList ();

.addFirst("D");

.addFirst("C");

.addFirst("B");

.addFirst("aA");

.modify ();

—_ e —

What does the above program print?

(a) ABCD and then terminates abruptly with NullPointerException
(b) ABCBCB
(c) ABCDAB
(d) ABCDBC
(e) DCBCBC

April 2015 ITI 1121

Page 6 of 20

G. Consider the following class definition:

public class SinglyLinkedList {
public static class Node {

public int value;
public Node next;

public Node(int value, Node next) {

this . value = value;
this .next = next;

}

public Node first;

public void addFirst(int elem) {

first = new Node(elem, first);
¥
public int mystery () {

if (first == null) {

return O;

}

return mystery (first , 0);
¥

private int mystery(Node p, int n) {
int result;

if (p.next == null) {

result = n + p.value;
} else {

result = mystery(p.next, n + p.value);
}

return result;

}

public static void main(String [] args) {

SinglyLinkedList 1;
1 = new SinglyLinkedList ();

l1.addFirst (3);
1.addFirst (2);
I1.addFirst(1);

System.out. println (1. mystery ());

What does the above program print?

April 2015 ITI 1121 Page 7 of 20

Question 2 (20 marks)

Write a class named GeoCoordinate that retains the longitude and latitude of an object on earth. Both longi-
tude and latitude are represented as double values that must be in the range [-90.0, 90.0].

The class has the following constructors:

e GeoCoordinate(), which initializes the latitude to 0.0 (the equator), the longitude to 0.0 (the prime
meridian).

e GeoCoordinate(double longitude, double latitude): initializes the longitude and latitudes to values
in [-90.0, 90.0].

The class has the following methods:

e double getLongitude() and double getLatitude(), that return the longitude and latitude of the GeoCo-
ordinate.

¢ boolean equals(GeoCoordinate g) that returns true if the GeoCoordinate of g and the current object
represent the same GeoCoordinate, and false otherwise.

¢ boolean isWithinBounds(GeoCoordinate sw, GeoCoordinate ne) that takes exactly two GeoCoor-
dinates representing the south-west and north-est vertices of a rectangular area (see Figure below), and
returns true if the current coordinate is within the bounds of the area, and false otherwise. (This can
be used to check whether a given vehicle for example has gone outside of a certain geographic area).

he
®

SW

April 2015 ITI 1121 Page 8 of 20

Finally, the execution of the test program below, GeoCoordinateTest, should produce the following result:

(20.0,30.0)

false

true

caught IllegalArgumentException: Wrong argument (s) upon construction of GeoCoordinate

public class GeoCoordinateTest {
public static void main(String[] args) {

GeoCoordinate currentLocation;
GeoCoordinate sw, ne;

currentLocation = new GeoCoordinate (20.0, 30.0);

SW
ne

new GeoCoordinate (10.0, 10.0);
new GeoCoordinate (30.0, 30.0);

System.out. println (currentLocation);
System.out.println (currentLocation.equals(sw));
System.out.println (currentLocation.isWithinBounds (sw, ne));

try {
GeoCoordinate wrongCoordinate = new GeoCoordinate(—100.0, 20.0);

} catch (IllegalArgumentException e) {
System.out. println ("caught IllegalArgumentException: " + e.getMessage());
}

April 2015 ITI 1121 Page 9 of 20

(Question 2 continued)

April 2015 ITI 1121 Page 10 of 20

(Question 2 continued)

April 2015 ITI 1121 Page 11 of 20

Question 3 (15 marks)

A doubly linked list that specifically stores strings is modified to enhance its efficiency. The linked list will now be an “indexed”
doubly linked list so that the location of strings starting with the letters of the alphabet ‘a’, ‘b’, ‘c’, ... ‘2’ are easily located (lower
case letters only for this question).

All strings starting with a given letter are stored (together) in sequence in the linked list. For example, “apple”, “aircraft”,
“antenna”, “banana”, “ball”, “baseball”, “balloon”, “cat”, “caramel”, “category”, etc. is an example of some strings that can be
stored in such sequence in the linked list.

To achieve this kind of indexing, a one dimensional array called “index” of size 26 is used. Each element in the array points
to the starting location in the linked list that holds the corresponding character. For example, index[0] points to the first node in

the linked list that has strings that start with the letter ‘a’, and so on. A null value indicates there are no strings of this kind in the list.

“apple" || "aircraft"|| "antena" || "banana" “cat"

head

size5 \ 1
S e

\ d ¢ ’

0 1 2 3 4 25

The diagram above shows the memory representation after inserting the first 5 elements. The execution of the test program below
must produce the following result:

{apple,aircraft, antena,banana, cat}
{apple,aircraft,antena,banana,ball,baseball,balloon, cat,caramel, case}
{apple,aircraft, antena,banana,ball,baseball,balloon, caramel, case}
{apple,aircraft,antena,ball,baseball,balloon, caramel, case}

IndexedLinkedList 1;

1 = new IndexedLinkedList ();

l.add("apple"); l.add("aircraft"); l.add("banana"); 1.add("antena"); 1.add("cat");
System.out. println(1);

l.add("ball"); 1l.add("baseball"); l.add("caramel"); 1.add("balloon"); 1.add("case");
System.out. println(1);

1.delete(’c’);

System.out. println(1);

1.delete('b’);

System.out. println(1l);

Complete the implementation of the class IndexLinkedList on the next pages.

April 2015 ITI 1121

Page 12 of 20

A. Complete the implementation of the constructor below. (3 marks)

public class IndexedLinkedList {
private final String ALPHA = "abcdefghijklmnopgrstuvwxyz";
private static class Node {
private final String value;
private Node previous;

private Node next;

private Node(String value, Node previous, Node next) {

this . value = value;
this . previous = previous;
this .next = next;

}

private final Node head;
private final Node[] index;
private int size;

public IndexedLinkedList() {

head = :

index = ;

size = 0;

}

// Continues on the next page...

April 2015 ITI 1121 Page 13 of 20

B. Write a method boolean delete(char c) that deletes the first occurring node whose strings starts with the character ¢. The
method returns true for a successful deletion, and false if nothing was found to delete. (12 marks)

public boolean delete (char c¢) {

int position;

position = ;

Node toRemoved;

toRemoved = ;

if () |

Node before, after;

before = ;

after = ;

if (&&) {

index [position] after;

} else {

index [position]

}

size ——;

}

return toRemoved != null;

}

Y // IndexedLinkedList

April 2015 ITI 1121 Page 14 of 20

Question 4 (10 marks)

Complete the implementation of the static method int remove(Queue<E> q, E e, int n), which removes the first n occurrences
of e in q. The method must work for any implementation of the interface Queue:

public interface Queue<E> {
boolean isEmpty ();
void enqueue(E e);
E dequeue ();

e Following a call to the method remove, the elements in the queue must remain in the same order, except that the first n
occurrences of e have been removed.

e The method throws NullPointerException if either q or e are null. It throws IllegalArgumentException if n is a negative
number.

o If the queue had less than n occurrences of e, the returned value represents the excess of elements that could not be removed.
Consider the example below.

e Since you do not know the size of the queue, you cannot use an array for temporary storage. Instead, you must either use
a queue or a stack (or both). You can assume the existence of the class LinkedQueue, which implements the interface
Queue, as well as LinkedStack, which implements the interface Stack.

public interface Stack<E> {
boolean isEmpty ();
E peek ();
E pop ();
void push(E e);

}

Executing the test program below produces the following output:

LinkedQueue: {A,B,R,A,C,A,D,A,B,R,A}
0

LinkedQueue: {B,R,C,D,A,B,R,A}

2

LinkedQueue: {B,R,D,A,B,R,A}

Queue<String > q;
q = new LinkedQueue<String >();

.enqueue ("A");
.enqueue ("B");
.enqueue ("R");
.enqueue ("A");
.enqueue ("C");
.enqueue ("A");
.enqueue ("D");
.enqueue ("A");
.enqueue ("B");
.enqueue ("R");
.enqueue ("A");

° o0 0 0,0 ,0 ,0,0,0,0,0

System .out. println(q);
System.out. println (remove(q,"A" ,3));
System.out. println(q);
System.out. println (remove(q,"C" ,3));
System.out. println(q);

April 2015 ITI 1121 Page 15 of 20

public class Remove {
public static <E> int remove(Queue<E> q, E e, int n) {

} // End of remove
Y // End of Remove

April 2015 ITI 1121 Page 16 of 20

Question 5 (10 marks)

A binary search tree is a flexible and efficient data structure. However, as we discussed in class, the structure of the tree depends
on the order in which the elements are inserted into the tree. In the worse cases, the binary search tree is no more efficient than
linked lists. A left linear tree is such degenerated case.

Definition: A binary search tree is left linear if it contains at least one node and all the nodes of the tree have no right child.

A. Give (draw) an example of a left linear binary search tree having exactly 4 nodes.

B. Implement the instance method boolean isLeftLinear() that returns true if the instance is left linear, and false otherwise.

public class BinarySearchTree<E extends Comparable<E>> {
private static class Node<T> {
private T value;

private Node<T> left;
private Node<T> right;

private Node(T value) {
this .value = value;
left = null;
right = null;

}

private Node<E> root = null;

April 2015 ITI 1121 Page 17 of 20

(Question 5 continued)

Y // End of BinarySearchTree

April 2015 ITI 1121 Page 18 of 20

A String and characters

Characteristics of the class String that might be useful.
e char charAt(int index) returns the char value at the specified index.
o int indexOf(int ch) returns the index within this string of the first occurrence of the specified character.
o int length() returns the length of this string.
Useful fact about characters.
e You can get the ASCII value of a character using a type cast to int.
e The execution of System.out.println((int) ’a’); displays 97.

e The execution of System.out.println((int) ’"b’); displays 98.

April 2015 ITI 1121

Page 19 of 20

B Stack

/% %

Stack Abstract Data Type. A Stack is a linear data structure
following last—in—first —out protocol, i.e. the last element
that has been added onto the Stack, is the first one to

be removed.

R SRR U T R

@param <E> the type of elements in this stack
*/

public interface Stack<E> {

/% %

x Tests if this Stack is empty.

*k

* @return true if this Stack is empty; and false otherwise.
x/

boolean isEmpty ();

/% %

* Returns a reference to the top element; does not change
x the state of this Stack.

*

* @return The top element of this stack without removing it.
*x/

abstract E peek ();

/% *

* Removes and returns the element at the top of this stack.
*

x @return The top element of this stack.

*/

abstract E pop();

/% %
* Puts an element onto the top of this stack.
*

* @param element the element be put onto the top of this stack.

*x/

void push(E element);

April 2015

ITI 1121

Page 20 of 20

C Queue

/

*
Queue Abstract Data Type. A Queue

is a linear data structure

following first —in—first —out protocol, i.e.

the first

element that

has been added to the Queue, 1is

the first one

to be removed.

I

@param <E> the

type of elements

in this queue

*/
public interface Queue<E> {
/% %

x Tests if
*

this Queue

x @return true

x/
boolean isEmpty ();

/% *

* Removes and returns
*

x @return
x/

the front e

E dequeue ();

/% %
* Puts an element at
*
* @param element the

*/

if this Queue

is empty.

is empty; and false otherwise.

the front element of the Queue.

lement of the Queue.

the rear of this Queue.

element be put at the rear of this Queue.

void enqueue(E element);

