Université d'Ottawa Py University of Ottawa
Faculté de génie]]]]1 Faculty of Engineering

Ecole d'ingénierie et de School of Information
technologie de l'information Ott Technology and Engineering
u dwa

L’Université canadienne
Canada’s university

Introduction to Computing IT (I'TT 1121)
FINAL EXAMINATION

Instructor: Marcel Turcotte

April 2014, duration: 3 hours

Identification
Last name: First name:
Student #: Seat #: __ Signature: Section A or B
Instructions Marking scheme
1. This is a closed book examination. Question | Maximum Result
2. No calculators, electronic devices or other aids are per-
. 1 10
mitted.
(a) Any electronic device or tool must be shut off, 2 10
stored and out of reach. 3 5
(b) Anyone who fails to comply with these regula- 4 20
tions may be charged with academic fraud. 5 15
3. Write your answers in the space provided. 6 15
(a) Use the back of pages if necessary. 7 15
(b) You may not hand in additional pages. 8 10
4. Write comments and assumptions to get partial marks. Total 100

5. Do not remove the staple holding the examination
pages together.

6. Beware, poor hand writing can affect grades.

7. Wait for the start of the examination.

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission

from the instructor.

April 2014 ITT 1121 Page 2 of 19

Question 1 (10 marks)

A. Despite autoboxing, in Java version 1.5 and above, the following statement is invalid.
True or False

Float value = 1.6;

B. The execution of the method foo is significantly faster than that of bar.
True or False

public static void foo () {
long sl = (long) 0;
for (int j=0; j <10000000; j++) {
sl = sl + (long) 1;
}

}

public static void bar() {
Long s2 = (long) O0;
for (int j=0; j <10000000; j++) {
s2 = s2 + (long) 1;
}

C. To declare the class Dog a subclass of Animal, one writes:

public class Dog implements Animal {

}

True or False

D. The finally block always executes when the try block exits, with or without exception.
True or False

E. The methods of an iterator for a singly linked list must have access to the implementation of the
classes Node and SinglyLinkedList.
True or False

April 2014 ITT 1121 Page 3 of 19

F. The value of the following (RPN) postfix expression is 14.
True or False

G. The following Binary Search Tree is balanced.

True or False

O
@QG)

()

H. The postorder traversal of the above tree is 1, 4, 7, 6, 3, 13, 14, 10, and 8.
True or False

I. The simplest way to implement a stack is by using a circular array.
True or False

J. Dummy nodes can only be used in a singly linked list.
True or False

April 2014 ITT 1121 Page 4 of 19

Question 2 (10 marks)

A. The Java program below will cause a compilation error because:

(a) There is no catch expression
(b

)
) There is no throws statement
(¢) Exception is an unchecked expression
(d)

)

d) (a) or (b)
(e) (a), (b) and (c)

public class Test {
public static void foo(int arg) {

if (arg == —-1) {
throw new Exception("an Exception");
4

B. Modify the memory diagram below to represent the content of the memory after the execution
of the following statement:

p.next = p;

|
@
| A ;
first x
@

A\

April 2014 ITT 1121 Page 5 of 19

C. Which of the following operation(s) in a singly linked list can never take constant time?

(a) addFirst
(b) addLast
(¢) removeFirst
(d) get

(e) (b) and (d)

D. Which of the following statements is incorrect.

(a) Queues are needed to implement method calls in a virtual machine
(b) Queues can be used to implement breadth-first search
(¢) Queues are useful for asynchronous treatment
(d) Stacks can be used to implement depth-first search

)

(e) The evaluation of an expression in Reverse Polish Notation (RPN) is best done with a stack

E. The depth of the following tree is.

—_ =
- W

April 2014 ITT 1121 Page 6 of 19

Question 3 (5 marks)

This question is about the “fail-fast” implementation of an iterator seen in class, as well as Assign-

ment #4. Given the following memory diagram, and knowing that i and j are both of type Iterator:
|

| A [®8] [¢]
head
S N
tail
K=

modCount

Which of the following sequences of method calls yields the following memory diagram:
|

head
tail
modCount
II] current current
[T]
modCount modCount

L5)] | [e]

=T)

j = l.iterator (); i l.iterator ();
.next (); i.next(); i.next(); i.remove();
.next (); j.next();

e e &

(b)

i = 1l.iterator(); j = l.iterator ();
j.next(); j.next(); j.next(); j.remove();
i.next(); i.next();

(c)

l.iterator (); i.next(); i.next();
l.iterator (); j.next(); j.next(); j.next(); j.remove();

—.
I

(d)
j = l.iterator (); j.next(); j.next(); j.next(); j.remove();
i = 1l.iterator (); i.next(); i.next();

(e)
j = l.iterator (); j.next(); j.next(); j.next(); j.remove();
=17

April 2014 ITT 1121 Page 7 of 19

Question 4 (20 marks)

Write a class, named Interval, to represent the set of all the points on a line greater than or equal to
left and smaller than or equal to right.

e The class Interval has exactly one constructor. This constructor has two parameters, the left
and right values of this interval.

The class has two getters, getLeft and getRight, returning the left and right values of this
interval, respectively.

The method contains returns true if and only if the value of the parameter is a point that
belongs to the interval.

The method intersect returns true if and only if this interval and that of the interval designated
by the parameter of the method are intersecting. In other words, these two intervals have points
in common.

Finally, the execution of the test program below, IntervalTest, should produce the following
result.

Interval: {12.0,20.0}

il.getLeft() -> 5.0

i2.getRight() -> 8.0

il.contains(2.0) -> false

i2.contains(5.0) -> true

il.intersect(i2) -> true

il.intersect(i3) -> false

caught IllegalArgumentException: left (10.0) is larger than right (5.0)

public class IntervalTest {
public static void main(String args|[]) {
Interval i1, i2, i3, i4;

il = new Interval (5.0, 10.0);
i2 = new Interval (4.0, 8.0);
i3 = new Interval (12.0, 20.0);

System.out.println (i
System .out.println
System.out.println

(
(
(
System.out.println (
(
(
(

3)
'il.getLeft () -> " + il.getLeft ());
'i2.getRight () -> " + i2.getRight());
"il.contains(2.0) -> " il.contains (2.0));
"i2.contains (5.0) -> " i2.contains (5.0));
'it1. 2));
'it1. 3));

System.out.println
System.out.println
System .out.println

intersect (i2) -> " il.intersect (i
intersect (i3) -> " il.intersect (i

+ 4+

try {
i4 = new Interval (10.0, 5.0);

System.out.println ("i4.getRight () -> " + i4.getRight ());
} catch (IllegalArgumentException e) {

System.out.println ("caught IllegalArgumentException: " + e.getMessage());
}

April 2014 ITT 1121 Page 8 of 19

April 2014 ITT 1121 Page 9 of 19

Question 5 (15 marks)

A. Complete the implementation of the class LinkedList below by filling the two rectangles so that
when creating a LinkedList object this memory diagram is produced:

head K‘\

Size
0

public class LinkedList<E> {
private static class Node<T> {
private T value;
private Node<T> previous;
private Node<T> next;

private Node(T value, Node<T> previous, Node<T> next) {

this.value = value;
this.previous = previous;
this.next = next;

public LinkedList () {

April 2014 ITT 1121 Page 10 of 19

B. For the class LinkedList on the previous page, complete the implementation of the method
addLast. Adding an element when the list is empty should produce this memory diagram:

head e
|
size
1

public void addLast(E elem) {

April 2014 ITT 1121 Page 11 of 19

Question 6 (15 marks)

For this question, a circular array is used to implement a queue. You must implement a special method
dequeue that takes one parameter (an integer) specifying how many elements need to be removed
from the queue. The method dequeue returns a reference to a list containing all the elements that
have been removed, in reverse of order of removal.

For this question, you are allowed to use the predefined class LinkedList. In particular, it has a
constructor LinkedList(), stores an arbitrarily large number of elements, and implements the following
methods.

public interface List<E> {
// Add the element at the specified position of the list
public abstract boolean add(int pos, E o);
// Returns the element at the specified position in this list.
public abstract E get(int index);
// Returns the number of elements in this list
public abstract int size ();

e For your implementation of the method dequeue, you cannot use the methods of the class
CircularQueue, accordingly these methods are not shown on the next page. Your code needs
to manipulate directly the instance variables, elems, front, rear, and size.

The execution of the Java program below displays “[2,1,0]”.

CircularQueue<Integer> q;
q = new CircularQueue<Integer >(100);

for (int i=0; i<8; i++) {
q.enqueue (i);
}

List<Integer> 1;
1 = q.dequeue (3);

System.out.print ("[");
for (int i=0; i<l.size (); i++) {
if (i>0) {
System.out.print (",");
}

System.out.print (l.get(i));

}

System .out.println ("]");

April 2014 ITT 1121 Page 12 of 19

import java.util.List;
import java.util.LinkedList;

public class CircularQueue<E> {
private E[] elems;
private int front, rear, size;

public CircularQueue (int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException("negative number");

elems = (E[]) new Object[capacity];

front = 0; // front must be 0 whenever the queue is emptly
rear = —1; // rear must be —1 whenever the queue is empty

Y // End of CircularQueue

April 2014 ITT 1121 Page 13 of 19

Question 7 (15 marks)

Write a method named frequency that takes as input a list of objects containing a character value
and a boolean flag initially set to false, and prints the frequency of each character of the list. Every
time an element is counted, its flag is set to true so that it is not printed or counted a second time.

List<Tuple> 1;
1 = new LinkedList<Tuple>();

; 1.add(new Tuple(’a’));
; 1.add(new Tuple(’a’));
; 1.add(new Tuple(’d’));

®
(oW
(oW
T
)
g
H
=
=
@
®
o,
o,

Frequency . frequency (1);

Executing the above program produces the following output “a : 4, b : 3, c: 2, d : 2”. Below you
will find a schematic representation of the list for the execution of the above program. Each set of
parentheses contains a character and boolean value. Here t and f are used to represent true and false,
respectively. This is the list before the execution of the program.

(a,f)->(,f)—>(a,f)->(c,f)->(b,f)->(a,f)->(c,f)->(a,f)->(d,f)->(d,f)->(b,f)

The method frequency will first display a : 4. The list will have been transformed as follows.
(a,t)->(b,f)—>(a,t)>(c,f)>(b,f)->(a,t)->(c,f)->(a,t)->(d,f)->(d,f)->(b,f)
Next, the method displays b : 3. The list will have been transformed as follows.
(a,t)->(b,t)->(a,t)>(c,f)->(b,t)->(a,t)->(c,f)->(a,t)->(d,f)->(d,£)->(b,t)
Next, the method displays ¢ : 2. The list will have been transformed as follows.
(a,t)->(b,t)->(a,t)>(c,t)>(b,t)->(a,t)->(c,t)->(a,t)->(d,£f)->(d,£)->(b,t)
Finally, the method displays d : 2. The list will have been transformed as follows.
(a,t)->(b,t)>(a,t)>(c,t)>(b,t)->(a,t)->(c,t)->(a,t)->(d,t)->(d,t)->(b,t)
Your implementation must comply with the following directives:

e You need to use iterators to traverse the list. In fact, the only method of the List that you can
use is the method iterator, which returns an iterator on the list.

e The frequency table should not be saved, just printed. In particular, you cannot use arrays, lists,
stacks or queues to store counts. The counts are simply printed.

e You will find the source code for the class Tuple and the interface Iterator on page 16.

April 2014 ITT 1121 Page 14 of 19

public class Frequency {

public static void frequency (List<Tuple> 1) {

Y // End of frequency
Y // End of Frequency

April 2014 ITI 1121

Page 15 of 19

Objects of the class Tuple are used to store a character and a boolean. The value of the boolean

is initially false. The method toggle is used to invert the value of visited.

public class Tuple {

private char c;
private boolean visited;

public Tuple(char c) {

this.c = c;
visited = false;
}
public void toggle() {
visited = ! visited;
}

public boolean visited () {
return visited;

¥

public char getChar () {
return c;

}

public String toString() {
if (visited) {
return "(" + ¢ + ",t)";
} else {
return "(" + ¢ + ",f)";
}

This question is about the abstract data type List and iterators. The interface List declares a
method named iterator, which has a return value of type Iterator. The interface Iterator declares

the following methods;

public interface Iterator <E> {

// Returns true if the iteration has more elements.
public abstract boolean hasNext ();

// Returns the next element in the iteration.
public abstract E next ();

April 2014 ITI 1121

Page 16 of 19

Question 8 (10 marks)

Implement the method int count(E low, E high) for the binary search tree presented in class. The
method returns the number of elements in the tree that are greater than or equal to low and smaller

than or equal to high.

e The elements stored in a binary search tree implement the interface Comparable<E>. Recall
that the method int compareTo(E other) returns a negative integer, zero, or a positive integer

as the instance is less than, equal to, or greater than the specified object.

e A method that is visiting too many nodes will get a maximum of 9 marks.

e Given a binary search tree, t, containing the values 1, 2, 3, 4, 5, 6, 7, 8, the call t.count(3,6)

returns the value 4.

public class BinarySearchTree<E extends Comparable<E> > {
private static class Node<T> {
private T value;

private Node<T> left ;
private Node<T> right;

private Node(T value) {
this.value = value;
left = null;
right = null;
}

private Node<E> root = null;

public int count(E low, E high) {

Y // End of count

// BinarySearchTree continues on the next page...

April 2014 ITT 1121 Page 17 of 19

Y // End of BinarySearchTree

April 2014 ITT 1121 Page 18 of 19

(blank space)

