
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of Engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI 1121)
Final Examination

Instructors: Oana Frunza and Rafael Falcon

April 15th, 2012. Duration: 3 hours

Identification

Last name, first name:

Student number: Signature:

Instructions

1. Read these instructions;
2. This is a closed book examination;
3. No calculators or other aids are permitted;
4. Write comments and assumptions to get par-

tial marks;
5. Beware, poor hand writing can affect grades;
6. Do not remove the staple holding the exam-

ination pages together;
7. Write your answers in the space provided.

Use the back of pages if necessary.
You may not hand in additional pages.

Marking scheme

Question Maximum Result

1 10

2 10

3 20

4 20

5 8

6 13

7 12

8 7

Total 100

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission

from the instructors.

April 2012 ITI 1121 Page 2 of 21

Question 1: (10 marks)

A. In Java, there are two ways of comparing objects, by identity or by content. Which of the
following two statements compares objects by identity?

(a) x == y

(b) x.equals(y)

B. In Java, there are two paradigms allowing for the creation of data structures that can be used
to store objects of various types, generics or inheritance. Which of the following two paradigms
allows for the detection of type errors at compile time?

(a) Inheritance

(b) Generics

C. The statement “cmp = eq(i, j)” below produces a compile-time error.
True or False.

public class Test {
public stat ic boolean eq (int a , int b) {

boolean r e s u l t ;
i f (a == b) {

r e s u l t = true ;
} else {

r e s u l t = fa l se ;
}
return r e s u l t ;

}
public stat ic void main (St r ing [] a rgs) {

long i , j ;
i = 5 ;
j = 10 ;
boolean cmp = eq (i , j) ;

}
}

D. Two or more methods in a class may have the same name as long as their return types are
different.
True or False

April 2012 ITI 1121 Page 3 of 21

E. The following program displays true.
True or False

public class Counter {
private stat ic int value = 0 ;
public void i n c r () {

value = value+1;
}
public int getValue () {

return value ;
}
public stat ic void main (St r ing [] a rgs) {

Counter a , b ;
a = new Counter () ;
a . i n c r () ;
b = new Counter () ;
b . i n c r () ;
System . out . p r i n t l n (b . getValue () == 1) ;

}
}

F. A constructor cannot have a return value/type.
True or False

G. A reference variable of type T, where T is an interface, can reference an object of class S if S,
or one of its superclasses, implements T.
True or False

H. The name this refers to a reference that is always available to an instance method and refers
to the object itself.
True or False

I. A method that throws exceptions of the class RuntimeException, or one of its subclass, must
declare this exception using a clause throws.
True or False

J. In a binary search tree, duplicated values are allowed.
True or False.

April 2012 ITI 1121 Page 4 of 21

Question 2: (10 marks)

A. What term is used to refer to a method that is automatically executed when an object of a
class is created?

(a) Setter

(b) Getter

(c) Initializer

(d) Constructor

(e) Mutator

Answer:

B. The of an object define(s) its potential behaviors.

(a) attributes

(b) white spaces

(c) variables

(d) methods

(e) names

Answer:

C. In a given class, if a local variable has the same name as an instance variable:

(a) This causes a compile-time error

(b) This causes a run-time error

(c) The local variable masks the instance variable

(d) The instance variable masks the local variable

Answer:

D. Which of the keywords below indicates that a new class is being derived from an existing class?

(a) super

(b) final

(c) extends

(d) inherits

(e) expands

Answer:

E. Regarding the ArrayList implementation of the interface List.

(a) Inserting an element at a random location with this implementation is always fast.

(b) Adding an element in the first position of the list is always fast with this implementation.

(c) Retrieving an element from a random location is always fast with this implementation.

(d) Removing the first element is always fast with this implementation.

Answer:

April 2012 ITI 1121 Page 5 of 21

Question 3: (20 marks)

A. Following the guidelines presented in class, as well as the lecture notes, draw the memory dia-
grams for all the objects, all the local variables, and parameter of the method Property.main
before the execution of the statement “aProperty = null”.

public class Property {

private St r ing name ;
private double value ;

public Property (S t r ing name , double value) {
this . name = name ;
this . va lue = value ;

}

public stat ic void main (St r ing [] a rgs) {

Property aProperty ;
S t r ing aName ;
double aValue ;

aName = new St r ing ("pi") ;
aValue = 3 .14159265 ;

aProperty = new Property (aName , aValue) ;

aProperty = null ;

}
}

April 2012 ITI 1121 Page 6 of 21

B. Identify five (5) compile-time warnings/errors in the Java program below.

public class LinkedStack<E> {

private stat ic class Node<T> {

private E value ;
private Node<T> next ;

private Node (T item , Node next) {
value = item ;
this . next = next ;

}

}

private Node<E> head ;

head == null ;

public stat ic void main (St r ing [] a rgs) {

Node<E> p ;
p = head ;

while (p != null) {
System . out . p r i n t l n (p . va lue) ;
p . next () ;

}

}

}

April 2012 ITI 1121 Page 7 of 21

C. Given the following partial declaration of the class LinkedQueue.

public class LinkedQueue {

private stat ic class Node {
private St r ing value ;
private Node next ;
private Node (St r ing value , Node next) {

this . va lue = value ;
this . next = next ;

}
}

private Node f ront , r ea r ;

// . . .
}

Modify the memory diagram below to represent the content of the memory after the execution
of the following statement:

rear.next = new Node("D", rear);

"B" "C""A"

front

rear

April 2012 ITI 1121 Page 8 of 21

D. Analyze the following Java program and indicate what its output will be:

1 public class Test {
2 public stat ic void d i sp layRat io (int a , int b) {
3 i f (b == 0) {
4 throw new I l l ega lArgumentExcept ion ("zero") ;
5 }
6 try {
7 System . out . p r i n t l n ("displayRatio: ratio is " + (a/b)) ;
8 } catch (I l l ega lArgumentExcept ion e1) {
9 System . out . p r i n t l n ("displayRatio: caught IllegalArgumentException") ;
10 } catch (Arithmet icExcept ion e2) {
11 System . out . p r i n t l n ("displayRatio: caught ArithmeticException") ;
12 }
13 }
14 public stat ic void main (St r ing [] a rgs) {
15 try {
16 d i sp l ayRat io (5 , 0) ;
17 } catch (RuntimeException e) {
18 System . out . p r i n t l n ("main: caught RuntimeException: " + e) ;
19 }
20 }
21 }

(a) Displays: “main: caught RuntimeException: java.lang.IllegalArgumentException: zero”

(b) The program terminates abruptly and displays the following stack trace:

Exception in thread "main" java.lang.IllegalArgumentException: zero

at Test.displayRatio(Test.java:4)

at Test.main(Test.java:16)

(c) The program terminates abruptly and displays the following stack trace:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Test.displayRatio(Test.java:7)

at Test.main(Test.java:16)

(d) Displays “displayRatio: ratio is (5/0)”

(e) Displays “displayRatio: caught IllegalArgumentException”

(f) Displays “displayRatio: caught ArithmeticException”

April 2012 ITI 1121 Page 9 of 21

E. Complete the implementation of the recursive instance method sum using the “head+tail”
strategy presented in class. The method sum returns the sum of all the elements of the list. In
particular, the execution of the main method would display the value 10.

public class LinkedLis t {

private stat ic class Node {
private int value ;
private Node next ;
private Node (int value , Node next) {

this . va lue = value ;
this . next = next ;

}
}

private Node head ;

public void addFirs t (int elem) {
head = new Node (elem , head) ;

}

public int sum() {

int r e s u l t = ;

return r e s u l t ;
}

private sum() {

r e s u l t ;

i f () { // Base case

r e s u l t = ;

} else { // General case

s = ; // Recursion

r e s u l t = ;
}
return r e s u l t ;

}

public stat ic void main (St r ing [] a rgs) {
LinkedLis t l ;
l = new LinkedLis t () ;
for (int i =0; i <5; i++) {

l . addFir s t (i) ;
}
System . out . p r i n t l n (l . sum()) ;

}

}

April 2012 ITI 1121 Page 10 of 21

F. The following implementation corresponds to the add method for a binary search tree:

private boolean add (In t eg e r obj , Node cur rent) {

boolean r e s u l t ;
int t e s t = obj . compareTo (cur rent . va lue) ;

i f (t e s t == 0) {
r e s u l t = fa l se ; // a l r eady e x i s t s , not added

} else i f (t e s t < 0) {
i f (cur r ent . l e f t == null) {

cur rent . l e f t = new Node (obj) ;
r e s u l t = true ;

} else {
r e s u l t = add (obj , cur r ent . l e f t) ;

}
} else {

i f (cur r ent . r i g h t == null) {
cur rent . r i g h t = new Node (obj) ;
r e s u l t = true ;

} else {
r e s u l t = add (obj , cur r ent . r i g h t) ;

}
}
return r e s u l t ;

}

By repeatedly invoking the add method with different integer values, the binary search tree
displayed to the left has been generated. Write in the box to the right the sequence in which
the integer numbers were added to the tree (e.g.: 1 2 3 4 5 6 7 8 9 10).

2

1

4

5

6

3

8 10

9

7

April 2012 ITI 1121 Page 11 of 21

Question 4: (20 marks)

There are 52 cards in a deck; each belongs to one of four suits and one of 13 ranks. The suits from
the lowest to the highest importance are: Spades, Hearts, Diamonds and Clubs. The ranks are: Ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King. The suits and ranks are mapped to two arrays of
values as follows:

• int [] suits = { 1, 2, 3, 4 }; where 1 maps Spades; 2 maps Hearts; 3 maps Diamond; 4 maps
Clubs

• int [] ranks = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }; where 1 maps Ace; 2 maps 2; ... 11
maps Jack, ...

Write the Java implementation of the classes Card, Deck, and Hand following the instructions
below.

A. The class Card implements Comparable<Card> and has fields for holding the rank and
suit information of a card. Implement the method: public int compareTo(Card other)
that returns -1, 0, or 1 as this object is less than, equal to, or greater than other. Make sure
to include at least one constructor, as well as appropriate getter and setter methods.

April 2012 ITI 1121 Page 12 of 21

B. The class Deck uses the ArrayList implementation of the abstract data type List to store the
52 cards. The class has a constructor that takes no parameter and creates a deck of 52 playing
cards. The deck is set up in the order: Spades, Hearts, Diamonds and Clubs. Implement the
methods:

• public void shuffle() that randomly shuffles a deck of cards. Each card in the deck
will be shuffled with a randomly selected card from the deck; Hint: Use the method
random() of the java.lang.Math class, which returns a value of type double in
the range [0; 1).

• public Card dealCard() removes the last card from the deck and returns it. The method
will throw an IllegalStateException object if the deck is empty.

+ add(E element) : boolean
+ add(int index, E element)
+ remove(int index) : E
+ remove(E object) : boolean
+ get(int index) : E
+ set(int index, E element) : E
+ indexOf(E object) : int
+ lastIndexOf(E object) : int
+ contains(E object) : boolean
+ size() : int
+ isEmpty() : boolean

« List »

April 2012 ITI 1121 Page 13 of 21

C. The class Hand uses the ArrayList implementation of the abstract data type List to store the
cards in the hand. Implement the method: public int total () that returns the total number
of cards in the hand.

April 2012 ITI 1121 Page 14 of 21

Question 5: (8 marks)

For this question, there is an interface called Queue and its implementation, a class called Mys-
teryQueue.

public interface Queue<E> {
public abstract boolean isEmpty () ;
public abstract void enqueue (E value) ;
public abstract E dequeue () ;

}

The class MysteryQueue implements the interface Queue. The constructor (public MysteryQueue())
creates an empty queue. The implementation can hold an arbitrarily large number of elements. Make
no other assumption about this implementation; in particular, you cannot assume that it uses an array
or a linked-list.

For the class Utils below, write a class (static) method that returns true if the parameters q1 and
q2 designate queues having the same elements in the same order, and false otherwise. Furthermore,
the queues designated by the parameters q1 and q2 must not be changed (i.e. after the method call,
they must contain the same elements, in the same order, as before the call).

April 2012 ITI 1121 Page 15 of 21

public class Ut i l s {
public stat ic <E> boolean eq (Queue<E> q1 , Queue<E> q1) {

} // End o f the method eq
} // End o f the c l a s s U t i l s

April 2012 ITI 1121 Page 16 of 21

Question 6: (13 marks)

Implement the method remove(int from, int to) for the class LinkedList. This instance method
removes all the elements in the specified range from this list and returns a new list that contains all
the removed elements, in their original order. The implementation of LinkedList has the following
characteristics:

• An instance always starts off with a dummy node, which serves as a marker for the start of the
list. The dummy node is never used to store data. The empty list consists of the dummy node
only;

• In the implementation for this question, the nodes of the list are doubly linked;

• In this implementation, the list is circular, i.e. the reference next of the last node of the list
is pointing at the dummy node, the reference previous of the dummy node is pointing at the
last element of the list. In the empty list, the dummy node is the first and last node of the list,
its references previous and next are pointing at the node itself;

• Since the last node is easily accessed, because it is always the previous node of the dummy
node, the header of the list does not have (need) a tail pointer.

Example: if xs is a reference designating a list containing the following elements [a,b,c,d,e,f],
after the method call ys = xs.remove(2,3), the list designated by xs contains [a,b,e,f], and ys
designates a list containing [c,d].

Write your answer in the class LinkedList on the next page. You cannot use the methods
of the class LinkedList. In particular, you cannot use the methods add() or remove().

Hint: draw detailed memory diagrams.

April 2012 ITI 1121 Page 17 of 21

public class LinkedList<E> {
private stat ic class Node<T> { // implementat ion o f the doub ly l i n k e d nodes

private T value ;
private Node<T> prev ious ;
private Node<T> next ;
private Node (T value , Node<T> previous , Node<T> next) {

this . va lue = value ;
this . p r ev ious = prev ious ;
this . next = next ;

}
}
private Node<E> head ;
private int s i z e ;
public LinkedLis t () {

head = new Node<E>(null , null , null) ;
head . next = head . prev ious = head ;
s i z e = 0 ;

}

public LinkedList<E> remove (int from , int to) {

} // End o f remove
} // End o f L inkedLi s t

April 2012 ITI 1121 Page 18 of 21

Question 7: (12 marks)

This question is about circular queue and iterator. The class CircularQueue uses the implemen-
tation technique called “circular array” to implement a fixed-size queue. This class also provides an
implementation of an iterator.

public interface I t e r a t o r<E> {
// Returns the next e lement in the i t e r a t i o n .
public abstract E next () ;

// Returns t rue i f the i t e r a t i o n has more e lements .
public abstract boolean hasNext () ;

}

• This implementation uses a fixed-size circular array;

• An object of the class CircularQueue has a method iterator that returns an object of the
class CircularQueueIterator. This class implements the interface Iterator;

• A call to the method hasNext of an iterator object returns true if there are more elements
(cyclically) in the queue, and false otherwise;

• A call to the method next of an iterator object returns the next element in the queue (cyclically).
Specifically, the first call to next returns the front element, the second call returns the element
immediately after the first element, etc. The value of the “current” index of the iterator must
wrap around the fixed-size array in the class CircularQueue. Eventually, a call to the method
next will return the rear element of the queue. At this point, a call to the method hasNext
returns false and a call to the method next will cause NoSuchElementException to be
thrown.

Complete the implementation of the class CircularQueue given below.

public class CircularQueue<E> implements Queue<E> {

private stat ic f ina l int DEFAULT CAPACITY = 100 ;
private int f ront , rear , s i z e ;
private E [] elems ;

public CircularQueue (int capac i ty) {
elems = (E []) new Object [capac i ty] ;
f r on t = 0 ;
r ea r = −1;
s i z e = 0 ;

}

// cont inues on the next page

April 2012 ITI 1121 Page 19 of 21

public boolean isEmpty () {
return (s i z e == 0) ;

}

public void enqueue (E value) {
r ea r = (r ea r+1) % elems . l ength ;
elems [r ea r] = value ;
s i z e = Math . min (s i z e + 1 , elems . l ength) ;

}

public E dequeue () {
E savedValue = elems [f r on t] ;
e lems [f r on t] = null ;
s i z e −−;
f r on t = (f r on t+1) % elems . l ength ;
return savedValue ;

}

private Circu la rQueue I t e ra to r implements I t e r a t o r<E> {

private cur rent = ;

public E next () {

i f () {
throw new NoSuchElementException () ;

}

return ;
}

public boolean hasNext () {
boolean r e s u l t ;

r e s u l t = ;

return r e s u l t ;
}

} // End o f Ci rcu larQueueI t e ra tor

public i t e r a t o r () {

return ;
}

} // End o f CircularQueue

April 2012 ITI 1121 Page 20 of 21

Question 8: (7 marks)

For the class BinarySearchTree below, write an implementation for the instance method public int
getHeight(E elem) that returns the number of links to follow from the root to the node containing
the value elem, or -1 if elem was not found in this tree.

public class BinarySearchTree< E extends Comparable<E> > {

private stat ic class Node<F extends Comparable<F> > {

private F value ;
private Node<F> l e f t ;
private Node<F> r i g h t ;

private Node (F value) {
this . va lue = value ;
l e f t = null ;
r i g h t = null ;

}
}

private Node<E> root = null ;

}

April 2012 ITI 1121 Page 21 of 21

(blank space)

