
Introduction to Computing II (ITI 1121)
Final Examination

Instructor: Marcel Turcotte

April 2011, duration: 3 hours

Identification

Last name, first name:

Student number: Signature:

Instructions

1. Read these instructions;
2. This is a closed book examination;
3. No calculators or other aids are permitted;
4. Write comments and assumptions to get par-

tial marks;
5. Beware, poor hand writing can affect grades;
6. Do not remove the staple holding the exam-

ination pages together;
7. Write your answers in the space provided.

Use the back of pages if necessary.
You may not hand in additional pages.

Marking scheme

Question Maximum Result

1 10

2 10

3 20

4 20

5 8

6 13

7 12

8 7

Total 100

April 2011 ITI 1121 Page 2 of 18

Question 1: (10 marks)

A. The statement “cmp = compare(i, j)” below will produce a compile-time error.
True or False.

public class Test {
public stat ic int compare (long a , long b) {

return a < b ? −1 : (a == b) ? 0 : 1 ;
}
public stat ic void main (St r ing [] a rgs) {

int i , j , cmp ;
i = 5 ;
j = 10 ;
cmp = compare (i , j) ;

}
}

B. If p is of type int, the test of the if statement below will produce a compile-time error.
True or False.

i f (p == null) {
System . out . p r i n t l n ("is empty") ;

}

C. Two or more methods in a class may have the same name, as long as the types of return values
are different.
True or False

D. Each instance of a class has its own set of instance variables.
True or False

E. When you write a constructor for a class, the default constructor that Java automatically
provides is no longer present.
True or False

F. A reference variable of type T can reference an object of class T or any of its superclasses.
True or False

G. You are not required to catch exceptions that inherit from the class RuntimeException.
True or False

H. The throws clause causes an exception to be thrown.
True or False

I. In a singly linked list implementation, the reference tail facilitates the implementation of the
method addLast.
True or False.

J. In a binary search tree, duplicated values are not allowed.
True or False.

April 2011 ITI 1121 Page 3 of 18

Question 2: (10 marks)

A. The name of a reference variable that is always available to an instance method and refers to
the object itself.

(a) self

(b) this

(c) object

(d) instance

(e) me

B. A method in a subclass that has the same signature as a method in the superclass is

(a) overloading

(b) overriding

(c) chaining

(d) an error

C. All the classes directly or indirectly inherit from this class.

(a) Object

(b) Class

(c) Instance

(d) Root

(e) Super

D. To remove the first node in a nonempty singly linked list, with no dummy node,

(a) move the successor reference in the head node one node forward:

head.next = head.next.next;

(b) set a reference pred to the predecessor of the node you want to remove, and set the
successor of pred to the successor of the head

(c) move the head reference one node forward:

head = head.next;

(d) delete the node by setting the head reference to null:

head = null;

E. For the implementation of a queue using singly linked nodes,

(a) front designates the first element and rear designates the last element;

(b) rear designates the first element and front designates the last element;

(c) It does not matter, (a) and (b) would both lead to efficient implementations;

(d) None of the above.

April 2011 ITI 1121 Page 4 of 18

Question 3: (20 marks)

A. Following the guidelines presented in class, as well as the lecture notes, draw the memory
diagrams for all the objects and all the local variables of the method ArrayList.init following
the execution of the statement “ys = xs”.

public class ArrayList<E> {

private E [] elems ;
private int s i z e ;

public ArrayList (E value , int range , int capac i ty) {
elems = (E []) new Object [capac i ty] ;

for (int i =0; i<range ; i++) {
elems [i] = value ;

}

s i z e = range ;
}

public stat ic void i n i t () {
St r ing s ;
s = new St r ing ("Quentin") ;

int r ;
r = 2 ;

ArrayList<Str ing> xs , ys ;
xs = new ArrayList<Str ing >(s , r , 5) ;

ys = xs ;
}

}

April 2011 ITI 1121 Page 5 of 18

B. Identify five (5) compile-time errors in the Java program below.

public class LinkedLis t {

private stat ic class Node<E> {

private E value ;
private Node<E> next ;

private void Node (E value , Node<E> next) {
this . va lue = value ;
this . next = next ;

}

}

private Node<E> head ;

public stat ic void main (St r ing [] a rgs) {

private Node<E> p ;

p = head ;

while (p != 0) {
System . out . p r i n t l n p . va lue ;
p++;

}

}

}

April 2011 ITI 1121 Page 6 of 18

C. Given the following partial declaration of the class LinkedList.

public class LinkedList<E> {

private stat ic class Node<E> {
private E value ;
private Node<E> next ;
private Node (E value , Node<E> next) {

this . va lue = value ;
this . next = next ;

}
}

private Node<E> head ;

// . . .
}

Modify the memory diagram below to represent the content of the memory after the execution
of the following statement 1:

p = new Node<E>(C, p.next);

B DA

head

p

1Assume that C is reference variable designating an object.

April 2011 ITI 1121 Page 7 of 18

D. Study the following Java program and tell what the program will output when run:

1 public class Test {
2 public stat ic void d i sp layRat io (int a , int b) {
3 i f (b == 0) {
4 throw new I l l ega lArgumentExcept ion ("zero") ;
5 }
6 try {
7 System . out . p r i n t l n ("ratio is " + (a/b)) ;
8 } catch (I l l ega lArgumentExcept ion e1) {
9 System . out . p r i n t l n ("caught IllegalArgumentException") ;
10 } catch (Arithmet icExcept ion e2) {
11 System . out . p r i n t l n ("caught ArithmeticException") ;
12 }
13 }
14 public stat ic void main (St r ing [] a rgs) {
15 d i sp layRat io (5 , 0) ;
16 }
17 }

(a) The program terminates abruptly and displays the following stack trace:

Exception in thread "main" java.lang.IllegalArgumentException: zero

at Test.displayRatio(Test.java:4)

at Test.main(Test.java:15)

(b) The program terminates abruptly and displays the following stack trace:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Test.displayRatio(Test.java:7)

at Test.main(Test.java:15)

(c) Displays “ratio is (5/0)”

(d) Displays “caught IllegalArgumentException”

(e) Displays “caught ArithmeticException”

E. Draw the binary search tree that results from inserting the following elements, in that order,
when using the method add presented in class: 8, 12, 11, 4, 5, 1.

April 2011 ITI 1121 Page 8 of 18

F. Beware, the following Java program has a bug! Tell what it will output when run.

public class LinkedList<E> {
private stat ic class Node<E> {

private E value ;
private Node<E> next ;
private Node (E value , Node<E> next) {

this . va lue = value ;
this . next = next ;

}
}
private Node<E> head ;
public void addFirs t (E elem) {

head = new Node<E>(elem , head) ;
}
public int s i z e () {

return s i z e (head) ;
}
private int s i z e (Node<E> cur rent) {

int l ength = 0 ;
i f (cur r ent == null) {

l ength = 0 ;
} else {

s i z e (cur rent . next) ;
l ength++;

}
return l ength ;

}
public stat ic void main (St r ing [] a rgs) {

LinkedList<Integer> l ;
l = new LinkedList<Integer >() ;
for (int i =0; i <5; i++) {

l . addFir s t (i) ;
}
System . out . p r i n t l n ("The size of l is " + l . s i z e ()) ;

}
}

(a) The size of l is 0

(b) The size of l is 1

(c) The size of l is 4

(d) The size of l is 6

(e) Infinite recusion causes a stack overflow

April 2011 ITI 1121 Page 9 of 18

Question 4: (20 marks)

Write the Java implementation of the classes Person, Customer, and PreferredCustomer follow-
ing all the instructions.

A. The class Person has fields for holding a person’s name, address and telephone number. Make
sure to include at least one constructor, as well as appropriate getter and setter methods.

April 2011 ITI 1121 Page 10 of 18

B. A Customer is a Person with a customer number, a tally of the purchases for this customer,
as well a field indicating if the customer has agreed to be on the mailing list. Write at least one
constructor, as well as the appropriate accessor methods.

April 2011 ITI 1121 Page 11 of 18

C. A PreferredCustomer is a Customer that earns on discounts based on the tally of his/her
purchases. Specifically, when a PreferredCustomer has spent $ 500, he or she gets a 5%
discount on future purchases, when a PreferredCustomer has spent $ 1,000, he or she gets a
7.5% discount on future purchases, finally, when a PreferredCustomer has spent $ 2,000, he
or she gets a 10% discount on future purchases. A PreferredCustomer has a method double
getDiscountLevel() that returns a discount percentage based on the tally of the purchases of
this customer. Make sure to include at least one constructor.

April 2011 ITI 1121 Page 12 of 18

Question 5: (8 marks)

Implement the class method public static <E> void swap(Stack<E> xs, Stack<E> ys). The
method exchanges the content of two stacks, xs and ys.

• The method must work for any valid implementation of the interface Stack;

• You can assume the existence of the classes DynamicArrayStack and LinkedStack.

Stack<Str ing> a , b ;

a = new LinkedStack<Str ing >() ;
a . push ("alpha") ; a . push ("beta") ; a . push ("gamma") ;

b = new DynamicArrayStack<Str ing >() ;
b . push ("blue") ; b . push ("green") ; b . push ("yellow") ; b . push ("black") ;

System . out . p r i n t l n (a) ;
System . out . p r i n t l n (b) ;
swap (a , b) ;
System . out . p r i n t l n (a) ;
System . out . p r i n t l n (b) ;

In particular, the above statements should print the following.

[gamma,beta,alpha]

[black,yellow,green,blue]

[black,yellow,green,blue]

[gamma,beta,alpha]

public stat ic <E> void swap (Stack<E> xs , Stack<E> ys) {

}

April 2011 ITI 1121 Page 13 of 18

Question 6: (13 marks)

Implement the method remove(int from, int to) for the class LinkedList. This instance method
removes all the elements in the specified range from this list and returns a new list that contains all
the removed elements, in their original order. The implementation of LinkedList has the following
characteristics.

• An instance always starts off with a dummy node, which serves as a marker for the start of the
list. The dummy node is never used to store data. The empty list consists of the dummy node
only;

• In the implementation for this question, the nodes of the list are doubly linked;

• In this implementation, the list is circular, i.e. the reference next of the last node of the list
is pointing at the dummy node, the reference previous of the dummy node is pointing at the
last element of the list. In the empty list, the dummy node is the first and last node of the list,
its references previous and next are pointing at the node itself;

• Since the last node is easily accessed, because it is always the previous node of the dummy
node, the header of the list does not have (need) a tail pointer.

Example: if xs is a reference disignating a list containing the following elements [a,b,c,d,e,f], after
the method call ys = xs.remove(2,3), the list designated by xs contains [a,b,e,f], and ys designates
a list containing [c,d].

Write your answer in the class LinkedList on the next page. You cannot use the methods
of the class LinkedList. In particular, you cannot use the methods add() or remove().

Hint: draw detailed memory diagrams.

April 2011 ITI 1121 Page 14 of 18

public class LinkedList<E> {
private stat ic class Node<T> { // implementat ion o f the doub ly l i n k e d nodes

private T value ;
private Node<T> prev ious ;
private Node<T> next ;
private Node (T value , Node<T> previous , Node<T> next) {

this . va lue = value ;
this . p r ev ious = prev ious ;
this . next = next ;

}
}
private Node<E> head ;
private int s i z e ;
public LinkedLis t () {

head = new Node<E>(null , null , null) ;
head . next = head . prev ious = head ;
s i z e = 0 ;

}

public LinkedList<E> remove (int from , int to) {

} // End o f remove
} // End o f L inkedLi s t

April 2011 ITI 1121 Page 15 of 18

Question 7: (12 marks)

Complete the implementation of the class CircularStack. Read all the directives. In particular,
notice that this stack implementation uses a circular array.

public interface Stack<E> {

// Adds an element onto the top o f t h i s s t a c k
public abstract void push (E element) ;

// Removes and re turns the top element o f the s t a c k
public abstract E pop () throws java . u t i l . EmptyStackException ;

// Returns t rue i f and only i f t h i s s t a c k i s empty
public abstract boolean isEmpty () ;

}

• This implementation uses a fixed-size circular array;

• When the stack is full, the method push replaces the bottom element with the new element to
be added;

• Therefore, the method push can always add new elements to the stack, even when the stack is
full, but the oldest elements, those at the bottom of the stack, are lost;

• If n is the capacity of the stack, then this stack memorises a maximum of n elements, the last
ones added to the stack;

• The constructor has a single parameter, which defines the capacity of the stack;

• The null value is a valid value for this stack.

public class Circu larStack<E> implements Stack<E> {

private E [] elems ;
private int top , s i z e ;

public Circu la rStack (int capac i ty) {

elems = ;

top = −1;
s i z e = 0 ;

}

public boolean isEmpty () {

return ;

}

// cont inues on the next page

April 2011 ITI 1121 Page 16 of 18

// Question 7 cont inues

public void push (E elem) {

top = ;

elems [top] = elem ;

i f () {

s i z e++;

}
}

public E pop () {

i f (isEmpty ()) {

;
}

E saved = elems [top] ;

e lems [top] = ;

i f () {

top = ;

s i z e = 0 ;

} else {

top−−;
s i z e −−;

i f () {

;

}
}

return saved ;
}

} // End o f C i rcu la rS tack

April 2011 ITI 1121 Page 17 of 18

Question 8: (7 marks)

Complete the implementation of the instance method isValid() for the class BinarySearchTree
below. This recursive method returns true if and only all the nodes of the tree are locally valid,
and false otherwise.

public class BinarySearchTree< E extends Comparable<E> > {

private stat ic class Node<F extends Comparable<F> > {

private F value ;
private Node<F> l e f t ;
private Node<F> r i g h t ;

private Node (F value) {
this . va lue = value ;
l e f t = null ;
r i g h t = null ;

}
}

private Node<E> root = null ;

public boolean i sVa l i d () {

return i sVa l i d () ;

}

private boolean i sVa l i d (Node<E> cur rent) {
boolean i sVa l i d = true ;

i f (cur r ent != null) {

i f (cur r ent . l e f t != null) {

i sVa l i d = && ;

}

i f () {

i sVa l i d = && ;

}

}

return i sVa l i d ;
}

}

April 2011 ITI 1121 Page 18 of 18

(blank space)

