
Introduction to Computer Science II (ITI 1121)
Final Examination

Instructor: Marcel Turcotte

April 2007, duration: 3 hours

Identification

Student name:

Student number: Signature:

Instructions

1. This is a closed book examination;
2. No calculators or other aids are permitted;
3. Write comments and assumptions to get partial marks;
4. Beware, poor hand writing can affect grades;
5. Do not remove the staple holding the examination pages together;
6. Write your answers in the space provided. Use the backs of pages if necessary.

You may not hand in additional pages;

Marking scheme

Question Maximum Result
1 20
2 10
3 15
4 15
5 10
6 10
7 10
8 10

Total 100

April 2007 ITI 1121 Page 2 of 20

Question 1: Applications of queues (20 marks)

The context for this question is a finance software package called JStock. Corporations are raising
funds by selling shares (equal portions of their capital). Collectively, the shares of a given corpo-
ration is called its stock. The shares prices vary, here on a daily basis. A shareholder makes a
capital gain when selling shares if the selling price is higher than the price at which the shares
were bought; or, suffers a capital loss if the selling price is lower than the price at which they were
bought.

When selling shares, the calculation of the capital gain is easy if all the shares were purchased
at the same price (e.g. a single transaction). However, the computation is more complex when
selling shares acquired through several transactions. In that case, standard accounting principles
dictate that the oldest shares must be sold first.

For example, a shareholder purchases 100 shares at $20 each in a first transaction, then purchases
20 shares at $24 each in a second transaction, then purchases 200 shares at $36 each in a third
transaction, and then sells 150 shares at $30 each. In that case, the capital gain is 100× (30−20)+
20× (30− 24) + 30× (30− 36) = 940 dollars.

JStock is a software package to help shareholders manage their portfolio. For simplicity, JStock
holds shares of single stock (the shares of single corporation). However, the shares are generally
acquired through several transactions.

All the shares that were purchased in a given transaction are kept in a Transaction object. The
number of shares and the price for each one is specified when creating a new Transaction object.
The class declares the methods getShares and getSharePrice that returns for a given transaction
the number of shares and the price of each share, respectively. The class also implements a method
to decrease the number of shares of a given transaction, the method is called sell, its parameter is
the number of shares sold.

Complete the implementation of the class JStock on pages 4 and 5. JStock uses a queue to store
the transactions of a given stock.

A. Implement the method void buy(int num, int sharePrice). It adds a new transaction
at the rear of the queue. The values of the parameters are used to create a new transaction;

B. Implement the method int sell(int num, int sharePrice). It updates the queue of
transactions so as to reduce the total number of shares by num, and returns the resulting
capital gain or capital loss (a negative gain);

C. Implement the method int getValue() that returns the total value of the portfolio. This is
the sum of the value of all the transactions. The value of a transaction is simply the product
of the number of shares by the share price.

Note: when using a queue, you can only use the methods that are defined in its public interface.

April 2007 ITI 1121 Page 3 of 20

For this question, there is a class called LinkedQueue that implements the interface Queue below.

public interface Queue<E> {

/**

* Returns true if this queue has no elements.

*

* @return true if this queue has no elements.

*/

public abstract boolean isEmpty();

/**

* Returns a reference to the front element; does not change

* the state of this queue.

*

* @return The front element of this queue without removing it.

*/

public abstract E peek() throws EmptyQueueException;

/**

* Add an element at the rear of this queue.

*

* @throws FullQueueException if this queue is full.

*/

public abstract void enqueue(E o) throws QueueOverflowException;

/**

* Remove and returns the front element of this queue.

*

* @return the front element of this queue.

* @throws EmptyQueueException if this queue contains no elements.

*/

public abstract E dequeue() throws EmptyQueueException;

}

April 2007 ITI 1121 Page 4 of 20

Here is the declaration of the class Transaction.

public class Transaction {

private int shares;

private int sharePrice;

public Transaction(int shares, int sharePrice) {

this.shares = shares;

this.sharePrice = sharePrice;

}

public int getShares() {

return shares;

}

public void sell(int num) {

if (num < 0 || num > shares) {

throw new IllegalArgumentException(Integer.toString(num));

}

shares = shares - num;

}

public int getSharePrice() {

return sharePrice;

}

}

Here is the declaration of the class JStock.

public class JStock {

private Queue<Transaction> myShares;

public JStock() {

myShares = new LinkedQueue<Transaction>();

}

public void buy(int num, int sharePrice) {

} // End of buy

April 2007 ITI 1121 Page 5 of 20

public int sell(int num, int sharePrice) {

} // End of sell

public int getValue() {

} // End of getValue

} // End of JStock

April 2007 ITI 1121 Page 6 of 20

Question 2: CircularQueue (10 marks)

Show the result that will be displayed on the screen for each of the following two calls to the method
dump in the code fragment below. The class CircularQueue can be found on pages 7 and 8.

CircularQueue<Integer> q;

q = new CircularQueue<Integer>(4);

int i = 0;

while (! q.isFull()) {

i = i + 1;

q.enqueue(new Integer(i));

}

if (! q.isEmpty()) {

q.dequeue();

}

if (! q.isEmpty()) {

q.dequeue();

}

while (! q.isFull()) {

i = i + 1;

q.enqueue(new Integer(i));

}

q.dump();

while (! q.isEmpty()) {

q.dequeue();

}

q.dump();

First call: Second call:

April 2007 ITI 1121 Page 7 of 20

public class CircularQueue<E> implements Queue<E> {

public static final int DEFAULT_CAPACITY = 100;

private final int MAX_QUEUE_SIZE;

private E[] elems;

private int front, rear;

public CircularQueue() {

this(DEFAULT_CAPACITY);

}

public CircularQueue(int capacity) {

if (capacity < 0) {

throw new IllegalArgumentException(Integer.toString(capacity));

}

MAX_QUEUE_SIZE = capacity;

elems = (E []) new Object[MAX_QUEUE_SIZE];

front = 0;

rear = -1; // Represents the empty queue

}

public boolean isEmpty() {

return (rear == -1);

}

public boolean isFull() {

return (! isEmpty()) && nextIndex(rear) == front;

}

private int nextIndex(int index) {

return (index+1) % MAX_QUEUE_SIZE;

}

public void dump() {

System.out.println("MAX_QUEUE_SIZE = " + MAX_QUEUE_SIZE);

System.out.println("front = " + front);

System.out.println("rear = " + rear);

for (int i=0; i<elems.length; i++) {

System.out.print("elems["+i+"] = ");

if (elems[i] == null) {

System.out.println("null");

} else {

System.out.println(elems[i]);

}

}

System.out.println();

}

April 2007 ITI 1121 Page 8 of 20

public void enqueue(E o) {

if (o == null) {

throw new IllegalArgumentException("null");

}

if (isFull()) {

throw new QueueOverflowException();

}

rear = nextIndex(rear);

elems[rear] = o;

}

public E dequeue() {

if (isEmpty()) {

throw new EmptyQueueException();

}

E result = elems[front];

elems[front] = null; // ‘‘scrubbing’’

if (front == rear) { // Following this call to dequeue

front = 0; // the queue will be empty

rear = -1;

} else {

front = nextIndex(front);

}

return result;

}

} // End of CircularQueue

April 2007 ITI 1121 Page 9 of 20

Question 3: splitAfter (15 marks)

Complete the implementation of the instance method LinkedList<E> splitAfter(E obj). The
method splitAfter splits this LinkedList in two parts. The original list retains all the elements
up to and including the left most occurrence of obj while the remaining elements are returned in a
new LinkedList. An exception, IllegalArgumentException, is thrown if the parameter obj is
not found in this list.

The implementation of LinkedList has the same characteristics as the one of the assignment 5.

• This implementation always starts off with a dummy node, which serves as a marker for the
start of the list. The dummy node is never used to store data. The empty list consists of the
dummy node only;

• In the implementation for this question, the nodes of the list are doubly linked;

• In this implementation, the list is circular, i.e. the reference next of the last node of the list
is pointing at the dummy node, the reference previous of the dummy node is pointing at the
last element of the list. In the empty list, the dummy node is the first and last node of the
list, its references previous and next are pointing at the node itself;

• Since the last node is easily accessed, because it is always the previous node of the dummy
node, the header of the list does not need (have) a tail pointer.

Write your answer in the class LinkedList on the next page. No method calls are allowed; except
for calls to the constructors.

Hint: draw the memory diagram for the special and general cases.

April 2007 ITI 1121 Page 10 of 20

public class LinkedList<E> {

private static class Node<E> { // Implementation of the doubly linked nodes

private E value;

private Node<E> previous;

private Node<E> next;

private Node(E value, Node<E> previous, Node<E> next) {

this.value = value;

this.previous = previous;

this.next = next;

}

}

private Node<E> head;

private int size;

public LinkedList() {

head = new Node<E>(null, null, null);

head.next = head.previous = head;

size = 0;

}

public LinkedList<E> splitAfter(E obj) {

April 2007 ITI 1121 Page 11 of 20

} // End of splitAfter

} // End of LinkedList

April 2007 ITI 1121 Page 12 of 20

Question 4: Iterator (15 marks)

The two parts of this question have to do with the class LinkedList (pages 13–14) and its Iterator
(page 15).

A. For the inner class LinkedListIterator on the next page, implement the method Iterator<E>
copy(). It returns a copy of this iterator;

B. For the class Test below, complete the implementation of the method compress. It trans-
forms the input list so as to preserve a single copy of consecutive elements that are equals.
Let l be a list that contains the following elements: “a,a,a,a,b,b,b,b,c,d,d,a”. Following a call
to the method compress, the content of the list l will be: “a,b,c,d,a”.

• Iterators must be used to traverse the list;

• The only method of the class LinkedList that you can use is Iterator<E> iterator();

• You can use all the methods of the Iterator.

public class Test {

public static <E> void compress(LinkedList<E> xs) {

} // End of compress

} // End of Test

April 2007 ITI 1121 Page 13 of 20

import java.util.ConcurrentModificationException;

public class LinkedList<E> {

private class LinkedListIterator implements Iterator<E> {

private Node<E> current;

private int expectedModCount;

private LinkedListIterator() {

expectedModCount = modCount;

current = head;

}

public E next() { ... }

public boolean hasNext() { ... }

public void remove() { ... }

public Iterator<E> copy() {

}

private void checkConcurrentModification() {

if (expectedModCount != modCount) {

throw new ConcurrentModificationException();

}

}

} // End of LinkedListIterator

April 2007 ITI 1121 Page 14 of 20

private static class Node<E> { // Doubly linked nodes

private E value;

private Node<E> previous;

private Node<E> next;

private Node(E value, Node<E> previous, Node<E> next) {

this.value = value;

this.previous = previous;

this.next = next;

}

}

private Node<E> head; // Designates the dummy node

private int modCount; // Implements the fail-fast technique

// Constructor

public LinkedList() {

head = new Node<E>(null, null, null); // Dummy node

head.next = head.previous = head;

modCount = 0;

}

// Returns an iterator for this list

public Iterator<E> iterator() { ... }

// All the other methods of LinkedList would be here but cannot be used

} // End of LinkedList

April 2007 ITI 1121 Page 15 of 20

public interface Iterator<E> {

/**

* Returns true if the iteration has more elements. (In other

* words, returns true if next would return an element rather than

* throwing an exception.)

*

* @return true if the iterator has more elements.

*/

public abstract boolean hasNext();

/**

* Returns the next element in the interation.

*

* @return the next element in the iteration.

* @exception NoSuchElementException iteration has no more elements.

*/

public abstract E next();

/**

* Removes from the list the last element that was returned by

* next. This call can only be made once per call to next.

*

* @exception IllegalStateException if next has not been called, or

* the number of element removed exceeds the number of time

* next was called.

*/

public void remove();

/**

* Returns a copy of this iterator.

*

* @return a copy of this iterator.

*/

public Iterator<E> copy();

}

April 2007 ITI 1121 Page 16 of 20

Question 5: take (10 marks)

In the class SinglyLinkedList below, write a recursive (instance) method that returns a new
linked list consisting of the first n elements of this list. This instance must remain unchanged.
The method public LinkedList<E> take(int n) must be implemented following the technique
presented in class for implementing recursive methods inside the class, i.e. where a recursive method
is made of a public part and a private recursive part, which we called the helper method. The public
method initiates the first call to the recursive method.

public class SinglyLinkedList<E> {

private static class Node<E> {

private E value;

private Node<E> next;

private Node(E value, Node<E> next) {

this.value = value;

this.next = next;

}

}

private Node<E> first; // Instance variable

public void addFirst(E item) { ... }

public void addLast(E item) { ... }

public SinglyLinkedList<E> take(int n) {

} // End of take

private takeRec() {

} // End of takeRec

} // End of SinglyLinkedList

April 2007 ITI 1121 Page 17 of 20

Question 6: findMax (10 marks)

Complete the implementation of the method findMax. It returns the largest value of the Se-
quence. Its implementation is recusive. The class Sequence is a linked list with additional
methods to promote writing recursive list processing methods. Here are the characteristics of the
class Sequence.

• The elements of the Sequence are Comparable;

• The methods of the class Sequence include.

– boolean isEmpty(); returns true if and only if this list is empty;

– E head(); returns a reference to the object stored in the first node of this list;

– Sequence<E> split(); returns the tail of this sequence, this sequence now contains a
single element;

– void join(Sequence<E> other); appends other at the end of this sequence, other
is now empty.

public class Q6 {

public static < E extends Comparable<E> > E findMax(Sequence<E> xs) {

// End of findMax

// End of Q6

April 2007 ITI 1121 Page 18 of 20

Question 7: getPathLength (10 marks)

Let the path length of a node be the number of links starting from the root that must be followed
to reach that node. The path length of the root is 0. Implement the method int getPathLength(
E obj) that returns the path length of the node where obj is found or -1 is obj if not found in
that tree.

public class BinarySearchTree<E extends Comparable<E> > {

private static class Node<E> {

private E value;

private Node<E> left;

private Node<E> right;

private Node(E value) {

this.value = value;

left = null;

right = null;

}

}

private Node<E> root = null;

// Answer:

} // End of BinarySearchTree

April 2007 ITI 1121 Page 19 of 20

Question 8: Exceptions (10 marks)

The method readTransactions reads an input file where each line is a transaction. A transaction
consists of two integers representing the number of shares and the price for each share, respectively.
A positive number of shares represents a purchase while a negative number represents selling shares.

A. Define a new type of exceptions named TransactionFileFormatException. This must be
an unchecked exception. There should be two constructors: one has no parameters while the
other has one, a message;

B. Make the necessary changes so that readTransactions throws an exception of type Trans-
actionFileFormatException if the format of the input is not valid. Hint: the method
boolean hasNextInt() of the Scanner returns true if the next token in this scanner’s input
can be interpreted as an int value;

C. The implementation of the method readTransactions is not valid because the strategy for
handling the exceptions has not been defined. Make the necessary changes to make it valid
(i.e. can be compiled). Make the changes directly in the source code, on the next page. In
particular, here are the methods that are known to throw exceptions.

• FileInputStream(String name) throws FileNotFoundException (a checked excep-
tion) if the file does not exist, is a directory rather than a regular file, or for some other
reason cannot be opened for reading;

• String readLine() throws IOException (a checked exception) if an I/O error occurs;

• int nextInt() throws InputMismatchException (an unchecked exception) if the next
token is not an int, or is out of range;

• int nextInt() throws NoSuchElementException (an unchecked exception) if input
is exhausted;

• close throws IOException (a checked exception) if an I/O error occurs.

Answer to part A.

April 2007 ITI 1121 Page 20 of 20

Answers to parts B and C.

public class JStock {

// ...

public static JStock readTransactions(String fileName) {

FileInputStream fin;

BufferedReader input;

Scanner scanner;

String line;

JStock js;

fin = new FileInputStream(fileName);

input = new BufferedReader(new InputStreamReader(fin));

js = new JStock();

while ((line = input.readLine()) != null) {

scanner = new Scanner(line); // Parses the line

int a = scanner.nextInt(); // Returns the next int

int b = scanner.nextInt(); // Returns the next int

if (a > 0) {

js.buy(a, b);

} else {

js.sell(a, b);

}

}

input.close();

return js;

} // End of readTransactions

} // End of JStock

