
Introduction to Computer Science II (ITI 1221)
Midterm Examination

Instructor: Marcel Turcotte

February 2006, duration: 2 hours

Identification

Student name:

Student number: Signature:

Instructions

1. This is a closed book examination;
2. No calculators or other aids are permitted;
3. Write comments and assumptions to get partial marks;
4. Beware, poor hand writing can affect grades;
5. Do not remove the staple holding the examination pages together;
6. Write your answers in the space provided. Use the backs of pages if necessary.

You may not hand in additional pages;

Marking scheme

Question Maximum Result
1 30
2 15
3 15
4 10
5 20
6 10

Total 100

February 2006 ITI 1221 Page 2 of 22

Question 1: Inheritance (30 marks)

The company Electronic Abstractions (EA) has hired you to work on the development of their
latest game. The action is set in the ancient city of Zenda, in the heart of the kingdom of Ruthenia.
You will be working on modelling the players (creatures).

Player

AbstractPlayer

Uldra Yakku

Given the above hierarchy and the following information:

• All players of the game have a method double attack() that returns a value representing
the strength of the attack. Player is an interface declaring the method double attack();

• An AbstractPlayer defines the characteristics that are common to all the creatures. This
abstract class implements the interface Player. All the creatures have a name (a character
String) as well as a life meter (a double ranging from 0.0 to 100.0). The initial value of
the life meter is 50.0;

• An Uldra is a creature (player) that carries a bottle filled with poison (a double value in
the range 0.0 . . . 100.0). Uldra creatures have a tendency to misplace their bottles (a boolean

value indicates if this Uldra has or not its bottle). The strength of an attack is zero if the
Uldra has no bottle. Otherwise, the strength of an attack is 10.0, or the remaining amount
of poison (which ever value is smaller). The strength of the attack reduces the quantity of
poison left by the same amount;

• A Yakku is a creature (player) that inhabits dark and unfriendly places, such as shearing
cracks. Yakku creatures have magical powers (double, range 0.0 . . . 100.0, the initial value is
10.0). The strength of the attack depends on both its life meter and its magical powers.
Specifically, a weight w is calculated as being the value of the life meter divided by 10.0.
The weight w is then multiplied by the level of magical powers to obtain the strength of the
attack. An attack reduces both the life meter and the magical powers by the strength
of the attack.

February 2006 ITI 1221 Page 3 of 22

Inheritance (continued)

A. In Java, implement the three classes, as well as the interface Player. Make sure to include
the constructors. For each attribute, write the access methods. The values of the attributes
must be valid. If the value of the parameter is less than 0.0 then set the value of the attribute
to 0.0. Similarly, if the value of the parameter is larger than the upper limit then set the
attribute to its upper limit. Finally, implement the methods attack. (20 marks)

February 2006 ITI 1221 Page 4 of 22

Inheritance (continued)

February 2006 ITI 1221 Page 5 of 22

Inheritance (continued)

B. Write a polymorphic class method, duel, that has two parameters, both of type AbstractPlayer.
Let’s denote by first and second the two parameters. While both players are alive (i.e. their
life meter is greater than zero), the first player launches an attack onto the second one,
if the second player is still alive, it launches an attack onto the first player. When a player
a launches an attack onto a player b, you must reduce the value of the life meter of b
by a.attack(). Finally, the method displays the name of the player that is still alive. (10
marks)

February 2006 ITI 1221 Page 6 of 22

Question 2: Using a stack (10 marks)

The class Calculator (next page) implements a postfix evaluator similar to the one seen in class,
as well as in assignment 2. Show the information that will be printed onto the screen when the
following two statements are executed:

Calculator c = new Calculator();

c.execute("40 5 2 4 1 ~ print + print ^ print * print - print");

Notes:

• For this question, there is an implementation of the interface Stack called LinkedStack. See
Appendix A;

• The implementation of the classes Token and Reader can be found in Appendix B and C.

February 2006 ITI 1221 Page 7 of 22

Using a stack (continued)

public class Calculator {
private Stack operands = new LinkedStack();
public void execute(String program) {

Reader r = new Reader(program);
while (r.hasMoreTokens()) {

Token t = r.nextToken();
if (! t.isSymbol()) {

operands.push(t);
} else if (t.sValue().equals("+")) {

Token b = (Token) operands.pop();
Token a = (Token) operands.pop();
Token res = new Token(a.iValue() + b.iValue());
operands.push(res);

} else if (t.sValue().equals("-")) {
Token b = (Token) operands.pop();
Token a = (Token) operands.pop();
Token res = new Token(a.iValue() - b.iValue());
operands.push(res);

} else if (t.sValue().equals("*")) {
Token b = (Token) operands.pop();
Token a = (Token) operands.pop();
Token res = new Token(a.iValue() * b.iValue());
operands.push(res);

} else if (t.sValue().equals("~")) {
Token o = (Token) operands.pop();
Token res = new Token(- o.iValue());
operands.push(res);

} else if (t.sValue().equals("^")) {
Token b = (Token) operands.pop();
Token a = (Token) operands.pop();
Token res = new Token((int) Math.pow(a.iValue(), b.iValue()));
operands.push(res);

} else if (t.sValue().equals("print")) {
System.out.println("-top-");
Stack tmp = new LinkedStack();
while (! operands.isEmpty()) {

t = (Token) operands.pop();
System.out.println(t);
tmp.push(t);

}
while (! tmp.isEmpty()) {

operands.push(tmp.pop());
}
System.out.println("-bottom-"); System.out.println();

}
}

}
}

February 2006 ITI 1221 Page 8 of 22

Question 3: DynamicArrayStack (15 marks)

The class DynamicArrayStack below uses a technique seen in class, as well as in assignment 2, to
expand, or shrink, its physical size whenever the data structure is full, or uses too much memory.

• DynamicArrayStack uses an array of references of type Object to store the elements of this
stack;

• The initial capacity of this array is given by the first parameter of the constructor;

• The physical size of the array is increased by a fixed amount (increment) when the method
void push(Object elem) is called and the array is full;

• The physical size of the array is decreased by a fixed amount (increment) during a call to
the method Object pop() if the number of free cells becomes increment or more;

• The increment is given by the second parameter of the constructor;

• The variable size indicates the number of elements stored in the array as well as the first
free cell of the array.

A. Correct at least 5 mistakes (logic, runtime or compile-time errors) in the partial implementa-
tion. (5 marks)

B. Complete the partial implementation of the class DynamicArrayStack given the above infor-
mation. (10 marks)

public class DynamicArrayStack extends Stack {

// Instance variables

private Object[] elems; // Stores the elements of this stack

private int size = 0; // Also designates the first free cell

private final int capacity; // Memorizes the initial capacity

private final int increment; // Used to increase/decrease the size

public DynamicArrayStack(int capacity, int increment) {

Object[] elems = new Object[capacity];

capacity = capacity;

}

// Returns true if this stack is empty;

public boolean isEmpty() {

return size == 0;

}

// Continues on the next page ...

February 2006 ITI 1221 Page 9 of 22

DynamicArrayStack (continued)

// Puts an element onto the top of this stack

public void push(Object element) {

if (__) {

increaseSize();

}

elems[size] = element;

size = size + 1;

}

// Increases the size of the array

private void increaseSize() {

Object[] newElems;

newElems = new Object[__];

// Copying all the elements to the new array

newElems = elems;

// Replacing elems with the new and larger array

__;

}

// Continues on the next page ...

February 2006 ITI 1221 Page 10 of 22

DynamicArrayStack (continued)

// Removes and returns the top element of this stack

public Object pop() {

if (__) {

decreaseSize();

}

Object saved = elems[size];

size = size - 1;

// Scrubbing the memory!

elems[size] = __________;

}

// Decreases the size of the array

private void decreaseSize() {

int newSize = elems.length - increment;

if (newSize < capacity) {

newSize = capacity;

}

Object[] newElems;

newElems = new Object[newSize];

for (int i=0; i<size; i++) {

newElems[i] = elems[i];

}

// Replacing elems with the new/smaller array

__;

}

} // end of DynamicArrayStack

February 2006 ITI 1221 Page 11 of 22

Question 4: Overriding equals (10 marks)

Every class inherits the method public boolean equals(Object other) from the class Object.
In the class CombinationLock below, override this definition of the method equals. Two locks are
equals if their status are “equals” and both CombinationLock have the same combination (defined
by the variables first, second and third). Otherwise, the method returns false. No values are
considered illegal; in particular, the method should be handling null values. The definition of the
class State can be found in Appendix D.

public class CombinationLock {

// Instance variables

private int first;

private int second;

private int third;

private State status;

// Constructor

public CombinationLock(int first, int second, int third) {

this.first = first;

this.second = second;

this.third = third;

status = new State();

}

public boolean equals() {

} // end of equals

} // end of CombinationLock

February 2006 ITI 1221 Page 12 of 22

Question 5: LinkedPair (20 marks)

A Pair represents a group of two objects. Here, the objects of a Pair are Comparable objects. The
interface Pair defines two methods: public Comparable getFirst() returns a reference to the
first object of the Pair while public Comparable getSecond() returns a reference to the second
object of the Pair. The implementation of the interfaces Pair and Comparable can be found in
Appendix E and F.

LinkedPair (next page) is an implementation of the interface Pair that uses objects of the class
Elem to store the objects of the Pair. Specifically, in the class LinkedPair, the instance variable
first designates an object of the class Elem used to store the first object of the Pair. The instance
variable next of the object designated by first points at an object of the class Elem used to store
the second object of the Pair. Adding new instance variables, either to the class LinkedPair or
Elem, is strictly prohibited.

A. Draw the memory diagram representing the content of the memory after the execution of the
following statement. The implementation of the class Name can be found in Appendix G.
(8 marks)

Pair p = new LinkedPair(new Name("Joseph", "Rotblat"), new Name("Wangari", "Maathai"));

B. For the partial implementation of the class LinkedPair, write the instance method public sort()

that sorts the (two) elements of a LinkedPair. The implementation of the method sort must
change the order of the elements (objects of the class Elem) — exchanging the values of
the nodes is not acceptable. (10 marks)

C. Complete the implementation of the method String toString(). It returns a String rep-
resentation of the pair starting with “(”, followed by the String representation of the first
object of the pair, followed by “,”, followed by the String representation of the second object
of the pair, followed by “)”. (2 marks)

February 2006 ITI 1221 Page 13 of 22

public class LinkedPair implements Pair {

private static class Elem {

private Comparable value;

private Elem next;

private Elem(Comparable value, Elem next) {

this.value = value;

this.next = next;

}

}

private Elem first;

public LinkedPair(Comparable a, Comparable b) {

if (a == null || b == null)

throw new IllegalArgumentException("null(s) value(s)");

first = new Elem(a, new Elem(b, null));

}

public void sort() {

} // end of sort

public String toString() {

}

} // end of LinkedStack

February 2006 ITI 1221 Page 14 of 22

Question 6: Short answer questions (10 marks)

A. Define a new checked exception called ZendaIOException. This should be a specialised
IOException. (4 marks)

B. Consider the class Zenda on the next page. Modify the declaration of all three methods so
that only the exceptions needing to be declared are actually declared by the methods (i.e.
remove those exceptions that can be removed without causing a compile-time error). Note
that FileNotFoundException and IllegalArgumentException are checked and unchecked
exception types respectively. (4 marks)

C. Explain why a runtime exception will occur if the following statements are executed. (2 marks)

public class Manager {

private Object[] elems;

public Manager(int capacity) {

if (elems.length == 0) {

elems = new Object[capacity];

}

}

public static void main(String[] args) {

Manager m = new Manager(100);

}

}

February 2006 ITI 1221 Page 15 of 22

Short answer questions (continued)

import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class Zenda {

private static void getConfig(String name)

throws ZendaIOException, FileNotFoundException, IllegalArgumentException {

if (name == null) {

throw new IllegalArgumentException("null value");

}

FileInputStream input;

try {

input = new FileInputStream(name);

} catch (FileNotFoundException e) {

throw new ZendaIOException("file not found: " + name);

}

}

private static void init()

throws ZendaIOException, FileNotFoundException, IllegalArgumentException {

getConfig("config.dat");

}

public static void main(String[] args)

throws ZendaIOException, FileNotFoundException, IllegalArgumentException {

try {

init();

} catch (ZendaIOException e) {

System.err.println("ERROR READING CONFIG FILE");

e.printStackTrace();

System.exit(1);

}

}

}

February 2006 ITI 1221 Page 16 of 22

A Stack

public interface Stack {

/**

* Tests if this Stack is empty.

*

* @return true if this Stack is empty; and false otherwise.

*/

public abstract boolean isEmpty();

/**

* Returns a reference to the top element; does not change

* the state of this Stack.

*

* @return The top element of this stack without removing it.

*/

public abstract Object pop();

/**

* Puts an element onto the top of this stack.

*

* @param element the element be put onto the top of this stack.

*/

public abstract void push(Object element);

}

February 2006 ITI 1221 Page 17 of 22

B Token

public class Token {

private static final int INTEGER = 1;

private static final int SYMBOL = 2;

private int iValue;

private String sValue;

private int type;

public Token(int iValue) {

this.iValue = iValue;

type = INTEGER;

}

public Token(String sValue) {

this.sValue = sValue;

type = SYMBOL;

}

public int iValue() {

// pre-condition: this Token represents an integer value

return iValue;

}

public String sValue() {

// pre-condition: this Token represents a symbol

return sValue;

}

public boolean isInteger() {

return type == INTEGER;

}

public boolean isSymbol() {

return type == SYMBOL;

}

public String toString() {

switch (type) {

case INTEGER:

return "INTEGER: " + iValue;

case SYMBOL:

return "SYMBOL: " + sValue;

default:

return "INVALID";

}

}

}

February 2006 ITI 1221 Page 18 of 22

C Reader

import java.util.StringTokenizer;

public class Reader {

private StringTokenizer st;

public Reader(String s) {

st = new StringTokenizer(s);

}

public boolean hasMoreTokens() {

return st.hasMoreTokens();

}

public Token nextToken() {

String t = st.nextToken();

if ("true".equals(t))

return new Token(true);

if ("false".equals(t))

return new Token(false);

try {

return new Token(Integer.parseInt(t));

} catch (NumberFormatException e) {

return new Token(t);

}

}

}

February 2006 ITI 1221 Page 19 of 22

D State

public class State {

// Constants

private static final int IS_OPEN = 0;

private static final int IS_LOCKED = 1;

private static final int IS_DEACTIVATED = 2;

// Instance variable

private int status = IS_OPEN;

// Access methods

public boolean isOpen() {

return status == IS_OPEN;

}

public boolean isLocked() {

return status == IS_LOCKED;

}

public boolean isDeactivated() {

return status == IS_DEACTIVATED;

}

public void open() {

status = IS_OPEN;

}

public void lock() {

status = IS_LOCKED;

}

public void deactivate() {

status = IS_DEACTIVATED;

}

// Overwrites the method equals.

// You can use the method equals, however, its implementation has been withheld.

}

February 2006 ITI 1221 Page 20 of 22

E Pair

public interface Pair {

/**

* Returns the first element of this Pair.

*

* @return the first element of this Pair.

*/

public abstract Comparable getFirst();

/**

* Returns the second element of this Pair.

*

* @return the second element of this Pair.

*/

public abstract Comparable getSecond();

}

F Comparable

public interface Comparable {

/**

* Compares this object with the specified object for order. Returns a

* negative integer, zero, or a positive integer as this object is less

* than, equal to, or greater than the specified object.<p>

*

* @param o the Object to be compared.

* @return a negative integer, zero, or a positive integer as this object

* is less than, equal to, or greater than the specified object.

*

* @throws ClassCastException if the specified object’s type prevents it

* from being compared to this Object.

*/

public abstract int compareTo(Object o);

}

February 2006 ITI 1221 Page 21 of 22

G Name

public class Name implements Comparable {

// Instance variables

private String firstName;

private String lastName;

// Constructor

public Name(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

// Access methods

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

// Implements the method compareTo(Object obj)

public int compareTo(Object obj) {

Name other = (Name) obj;

int result = lastName.compareTo(other.lastName);

if (result == 0) {

result = firstName.compareTo(other.fistName);

}

return result;

}

// Overwrites the method toString

public String toString() {

return firstName + " " + lastName;

}

}

February 2006 ITI 1221 Page 22 of 22

(blank space)

